
Institut für Informatik

Universität Augsburg

���������	
���
Bachelorarbeit

An Extensive Study of the
StyleGAN Architecture for Deep

Image Synthesis

Florian Barthel

Gutachter: Prof. Dr. Rainer Lienhart
Zweitgutachter: Prof. Dr. Elisabeth André

Betreuer: Stephan Brehm
Datum: September 30, 2020

ii

verfasst am
Lehrstuhl für maschinelles Sehen und Multimedia
Prof. Dr. Rainer Lienhart
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
www.Informatik.uni-augsburg.de

Abstract

This thesis analyzes the StyleGAN architecture, developed by the Nvidia research group
Tero Karras et al. In the context of an ablation study, each component of the StyleGAN
will be analyzed separately. Afterwards, the results are evaluated using the Fréchet
Inception Distance (FID) to objectively quantify the quality of the generated images.
Next to the FID metric, the generated images are also inspected by hand in order to
detect artifacts or patterns. The results of the ablation study showed that most compo-
nents improve the generated images quality, while few of them actually worsen it. It also
showed that all components had a similar impact on the model, pointing out that no
single component is responsible for the high quality images, produced by the StyleGAN.
Instead the combination of the components make the StyleGAN this successful. After
the ablation study, the StyleGAN is also trained on a different dataset to demonstrate
that the model also performs well on datasets with different image content.

iii

Contents

Abstract iii

1 Introduction 1

2 Related Work 3
2.1 Generative Adversarial Networks . 3
2.2 Challenges . 4

2.2.1 Non-Convergence . 5
2.2.2 Mode Collapse . 5

2.3 Metrics . 6
2.3.1 Fréchet Inception Distance . 7

2.4 Adaptive Instance Normalization . 8

3 StyleGAN Architecture 9
3.1 Style Transfer . 10
3.2 Progressively Growing Structure . 11

4 Disentanglement Metrics 13
4.1 Linear Separability . 14
4.2 Perceptual Path Length . 15

5 Ablation Study 19
5.1 Baseline Model . 19

5.1.1 Loss Functions . 20
5.1.2 Training Dataset . 21
5.1.3 Training Results . 22

5.2 Style Mixing . 25
5.3 Stochastic Variation . 28
5.4 Truncation Trick in W . 31
5.5 Mapping Network . 33
5.6 Adaptive Instance Normalization . 35
5.7 Minibatch Standard Deviation . 37
5.8 Progressive Growing . 39
5.9 Exponential Moving Average of the Generator Weights 42
5.10 Summary . 44

v

vi Contents

6 Results on the Car Dataset 45
6.1 Car Dataset . 45
6.2 Training Results . 47

7 Conclusion & Outlook 51

List of Figures 53

Bibliography 55

1 Introduction

With recent advances in machine learning the popularity of image synthesis has grown
substantially during the past few years. One of the major reasons for that was the
introduction to Generative Adversarial Networks (GANs) by Ian J. Godfellow et. al in
2014 [Goo+14]. In their paper they proposed a revolutionary network architecture that
allowed state of the art image synthesis using two deep neural networks with adversarial
behaviour.
Since then, GANs have found applications in many fields such as photo and video edit-
ing or data augmentation for deep learning models, making it according to Yann LeCun
”the most interesting idea in the last 10 years in machine learning” [Gui+20].
Some specific examples for applications of GANs are the prediction of the next frame in
videos [LKC16], the reconstruction of missing regions in images [Yeh+16], the creation
of super resolution images from low resolution images [Led+16] or even the data aug-
mentation to create a robust classification network for the detection of the coronavirus
from x-ray images [Kha+20].
In theory GANs are designed to produce an image distribution similar to the training
image distribution, but in reality they can be very difficult to train due to an instability
between the two networks. For that reason many research groups [BDS18; Zhu+17;
Mao+16] have proposed many different techniques and architectures to overcome these
training problems and improved quality of the generated images. One of the most suc-
cessful architectures is the StyleGAN, introduced by the Nvidia research group Tero
Karras, et. al [KLA18a]. In their paper, which won the ’Best Paper Honorable Men-
tion’ award of the CVPR conference in 2019, the research group proposes a new GAN
architecture that uses techniques from style transfer literature to generate images with
high resolution and high quality.
This thesis will analyze the StyleGAN model by applying an ablation study. An ablation
study is an analysis method in which single components are removed from a complex
system in order to understand the components functionality and influence on the sys-
tem. For comparing the performance of all experiments with each other, this thesis will
use the Fréchet Inception Distance, which is a metric that quantifies image quality in
correlation to human judgement.
After the ablation study the StyleGAN will also be analyzed when trained on a dif-
ferent dataset. The therefore used dataset is the car dataset, created by the chair for
Multimedia Computing and Computer Vision of the Augsburg University.

1

2 Related Work

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have become a very popular research topic
in recent years. According to google scholar, the paper ’Generative Adversarial Nets’,
published by Ian J. Goodfellow, et. al in 2014 [Goo+14], has already been cited more
than 22,000 times, making it one of the most influential papers in the field of machine
learning.
In the paper, Goodfellow et. al proposed a new architecture for image synthesis that
consists of two deep neural networks with adversarial behavior. The first network (the
generator), is trained to produce fake images from random input vectors. And the
secrond network (the discriminator), is trained to distinguish whether an image has
been created by the generator or was sampled from the training data, as shown in
Figure 2.1.

Figure 2.1: Traditional architecture for generative adversarial networks [Sil18]

As both networks are simultaneously improving to create and detect fake images over
the course of the training, the image distribution of the generated images pg converges
to the image distribution of the training data pdata [Goo+14, Proposition 2]. Ideally, a
global optimum is reached where pdata = pg [Goo+14, Theorem 1].

The idea of this approach can also be expressed in a non-cooperative minmax game over
the value function V (D,G) (2.1). On the one hand, the goal of the discriminator is
to maximize the output of V (D,G) by increasing the probability D to correctly label

3

4 Related Work

generated images G(z) and training images x. And, on the other hand, the goal of the
generator is to minimize V (D,G) by mapping the random input vectors z to the same
distribution as pdata and thereby decreasing the output for Ez∼pz(z)[log(1−D(G(z)))].

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

This minmax game is being played between the generator and the discriminator until
both models have reached a state at which they do not improve or adapt their output
irrespectively to the output of the other model. This state is called the Nash equilibrium
[MGN18].

If the model has been implemented and trained successfully, the output images produced
by the generator can then look as shown in Figure 2.2.

Figure 2.2: Example results of GANs by Ian J. Goodfellow. (a) is trained on the MNIST
dataset and (b) is trained on the TFD dataset [Goo+14]. The yellow boxed
images display the most similar image from the training dataset to the pre-
vious column, to demonstrate that the generator does not simply memorize
the training data.

2.2 Challenges

In theory ”if given enough capacity and training time” [Goo+14] the distribution of the
generated images of GANs will match the distribution of the training images. In reality
however those models can be very difficult to train, due to problems like non-convergence
or mode collapse.

2.2 Challenges 5

2.2.1 Non-Convergence

GANs are designed to converge towards a Nash equilibrium, where the discriminator
and the generator do not improve anymore, irrespectively to the output of the other
network. However, if the hyperparameters such as the learning rate were set poorly,
it can happen that the models do not converge and instead oscillate with increasing
magnitude [Goo16, Example 8.2].
Another example where the parameters can not converge to a Nash equilibrium is, when
the discriminator outperforms the generator. This is often the case at the beginning of
the training [Goo+14], where the generator produces random outputs. The discriminator
then easily detects whether the given sample is from the dataset or the generator. As a
result, the generator receives very large negative loss values and therefore large gradients,
since it minimizes the term Ez∼pz(z)[log(1−D(G(z)))] of the value function V (D,G) 2.1
with:

lim
D(G(z))→1

log(1−D(G(z))) = −∞ (2.2)

One solution for that problem is shown in section 5.1.1, regarding the loss functions of
the generator.

2.2.2 Mode Collapse

Mode collapse is a specific form of non-convergence. It describes the state in which the
generator produces images with a very limited range of variation (or modes) [Goo16].
This can happen, for instance, when the discriminator inspects the generated images
separately without regarding the batch-wise statistics [Ach+18]. The generator is then
able to focus on a single mode that the discriminator might have failed to detect as fake.
As a result the generator generator is then enforced to focus even further on that single
mode, until all generated images look the same. In Figure 2.3 the first row of result
images shows the output of a working generator (trained on the MNIST dataset), that
produces all numbers from 0 to 9. And the second row shows the output of a mode
collapsed generator that outputs the same image for any random input vector.

A technique that helps to prevent GANs from mode collapsing is the minibatch standard
deviation [Ach+18], which is discussed in section 5.7.

6 Related Work

Figure 2.3: GAN model results with mode collapse (bottom row) and without mode
collapse (top row) [Met+16].

2.3 Metrics

When it comes to determining the image quality for generated images of GAN models, it
can be very difficult, time consuming and subjective to decide whether one set of images
has a higher quality than another, as demonstrated in Figure 2.4. For that reason, it is
necessary to define metrics that quickly quantify the quality for large amount of images
in correlation to human judgement.
One of those metrics that has become very popular in recent years is the Fréchet In-
ception Distance, which will be used throughout this thesis to compare the images of
different StyleGAN versions.

Figure 2.4: Two image distributions that are hard to compare without metrics (Left:
FID 45 and Right: FID 13) [Heu+17, Figure A11]

2.3 Metrics 7

2.3.1 Fréchet Inception Distance

The Fréchet Inception Distance (FID) was first introduced in 2019 by Martin Heusel et
al. [Heu+17]. It is currently one of the most popular metrics for comparing different
GAN models, that have been trained on the same dataset. The main idea of the FID is
to quantify the difference between the feature embeddings of a pre-trained classification
network for the generated images and the training images by comparing their statistics.

In practice the FID is calculated by taking a large number of images from the training
dataset and the generated images (commonly 50 000 images each) and then computing
the activation vectors from the last feature map of the pre-trained InceptionV3 model
for each. The InceptionV3 model is a classification model which was developed by the
Google engineers Christian Szegedy, et al in 2015 [Sze+15]. Both activation vectors with
a shape of 50 000 x 2048 are compared by the following expression:

FID = ‖µ1 − µ2‖22 + Tr
(
C1 + C2 − 2

√
C1C2

)
(2.3)

Here µ1 and µ2 are the means of each activation and C1 and C2 are the covariances.
The Tr operator stands for the trace linear algebra operation, which is the sum of the
diagonal elements (

∑n
i=1 aii).

The effectiveness of this metric can be seen in Figure 2.5 where the FID is calculated
between an image and a modified version of the same image. It shows that the FID
correlates with the disturbance level of the image modifications.
By comparing the statistics for such large amounts of images with each other, the FID
also penalizes image variation next to image quality.

Figure 2.5: FID scores of modified images (lower is better) [Heu+17]

8 Related Work

2.4 Adaptive Instance Normalization

One major component of the StyleGAN model that will be analyzed in this thesis is the
style transfer. Style transfer denotes the technique of rendering the content of one image
in the style of another image [HB17].
The style transfer operation that was chosen in the StyleGAN model is the Adaptive
Instance Normalization (AdaIN) operation, which was introduced by Xun Huang and
Serge Belongie in 2017 [HB17].

The AdaIN operation (2.5) is constructed similarly to the instance normalization op-
eration (2.4). Like in instance normalization the input content x is first subtracted by
its mean and then divided by its standard deviation. But instead of using trainable
parameters γ and β as scale and bias, the AdaIN operation takes the mean of a second
input, the style input y, as bias and the standard deviation of the style input as scale.
In that way, the AdaIN applies the statistics of the style y onto the content x without
requiring trainable parameters such as γ or β.

IN(x) = γ

(
x− µ(x)

σ(x)

)
+ β (2.4)

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y) (2.5)

An example for style transfer with the AdaIN operation can be seen in Figure 2.6.
Here the AdaIN operation is applied onto the feature embeddings of the style and the
content, that were created by a pre-trained encoder network. The output of the AdaIN
operation is then decoded by another pre-trained network to visualize the result of the
style transfer.

Figure 2.6: Example images for style transfer using the AdaIN operation using an en-
coder and a decoder network. (modified from [HB17])

3 StyleGAN Architecture

The StyleGAN model was first introduced in 2018 by the Nvidia research group Tero
Karras et al. and is based on the previously, in 2017, published ProGAN model [Kar+17].
Like traditional GAN architectures the StyleGAN model also consists of a generator
and a discriminator. While the discriminator used in the StyleGAN architecture is a
conventional deep convolutional network, the generator was completely rebuilt to apply
modern techniques from style transfer literature.
Before diving into the specific components that have been implemented in the StyleGAN
model, this chapter will give a basic understanding of the model’s architecture and two
of its most important components. The first component is the style transfer and the
second component the progressively growing structure.

The following two sections are based on the StyleGAN [KLA18a] and the ProGAN
[Kar+17] paper.

9

10 StyleGAN Architecture

3.1 Style Transfer

In traditional GAN architectures, the generator uses a random latent vector that is fed
forward through the input layers of a neural network as shown in Figure 3.1 a. The
StyleGAN generator however first maps the latent vector from the input latent space
Z to an intermediate space W , which is also known as the disentangled latent space.
This is realized by using a fully connected network (Mapping Network f , Figure 3.1
b). The mapped latent vector w ∈ W is then taken as style input for the AdaIN style
transfer operation, from section 5.6, to apply w as a style onto the feature maps of a
deep convolutional neural network (Synthesis Network g, Figure 3.1 b).
This deep convolutional network, which is also called the synthesis network, is made out
of multiple blocks that each consist of two convolutional layers. Those convolutional
layers each have double the feature map resolution than the previous block, starting at
a resolution of 4x4.
The synthesis network only receives a constant input as basis for the convolutional layer,
so that it fully relies on the style inputs to adapt the produced image distribution to the
training dataset. In-between each convolution and AdaIN operation Gaussian noise is
added (B, Figure 3.1 b), which is resampled every training iteration and multiplied by
a trainable weight that is initially set to zero.

Figure 3.1: Comparing a traditional generator architecture (a), where the latent vector
z is fed forward through a convolutional network, to the StyleGAN generator
architecture (b), where the latent vector z is first mapped by a fully connected
network f to w ∈ W , which is then used to control the output of the synthesis
network g. [KLA18a, Figure 1]

3.2 Progressively Growing Structure 11

3.2 Progressively Growing Structure

In order to improve the training stability and to reduce the training time, Karras, et al.
[Kar+17] introduced a network structure, that dynamically increases the output resolu-
tion, by adding new layers to both the generator and the discriminator simultaneously
over the course of the training (Figure 3.2).

Figure 3.2: Progressive growing GAN structure over the training progress [Kar+17]

The Progressive Growing GAN (ProGAN) model initially produces 4x4 images in the
generator and also detects fake images at a 4x4 resolution in the discriminator. After
a number of images (600k - 800k) have been shown to the discriminator a new layer is
added with twice the output resolution in the generator and twice the input resolution
in the discriminator. This process is continued until the full resolution is reached.
Due to the small initial network size and the low resolution of the images that are fed to
the discriminator at the beginning of the training, the progressively growing structure
speeds up the training significantly [Kar+17]. Also by slowly increasing the output
resolution and thereby the complexity of the GAN, the stability of the training increases
[Kar+17], which helps to prevent non-convergence.

The idea of the ProGAN was inspired by prior approaches from Wang et al. [Wan+18]
and Ghosh et al. [Gho+18], who have used multiple generator and discriminator net-
works with increasing image resolutions to improve the output resolution and the training
stability. Instead of using multiple separate networks, the ProGAN structure only uses
one single network for all resolutions combined. This has the advantage that new layers
can be faded in smoothly, which prevents ”sudden shocks to the already well-trained
smaller-resolution layers” [Kar+17]. It is realized by using linear interpolation between
the upsampled output from the earlier low-resolution layer and the output of the newly
added layer, as shown in Figure 3.3. This is applied to both the generator and the

12 StyleGAN Architecture

discriminator with mirrored architecture.
The interpolation magnitude α, which is initialized with 0.0 when a new layer is added,
linearly increases to 1.0, at which point the network output comes exclusively from the
new layer.

Figure 3.3: Fading from a 16x16 resolution (a) to a 32x32 resolution (c) by slowly in-
creasing the influence of the convolution block on the output by increasing
the parameter α (b) [Kar+17].

4 Disentanglement Metrics

The Linear Separability (LS) and the Perceptual Path Length (PPL) are both metrics
that were published along with the StyleGAN paper [KLA18a].
Unlike the FID, those metrics do not quantify the image quality by calculating the dif-
ference between the generated image distribution and the training dataset distribution.
Instead they evaluate the disentanglement of the latent space Z and especially for the
StyleGAN model the disentanglement of the latent space W . The disentanglement of
the latent space describes how well the latent space can be split into linear subspaces,
where each subspace corresponds to single attributes in the output images of the gen-
erator [KLA18a]. The main goal of those metrics is to demonstrate that the mapping
network of the StyleGAN helps the generator to ”’unwarp’ W so that the factors of
variation become more linear” [KLA18a], which ideally makes it easier for the generator
to produce more realistic images.
Further studies on the efficiency of the mapping network will be made in chapter 5.5.

Earlier research has already proposed several metrics to quantify the disentanglement of
the latent space. But in contrast to most existing disentanglement metrics, the LS and
the PPL do not require an encoder network. This makes the metrics easy to use and
applicable to any given GAN with a latent space.

The following explanations for the LS and the PPL are based on the StyleGAN paper
[KLA18a].

13

14 Disentanglement Metrics

4.1 Linear Separability

The LS metric quantifies how well the latent spaces Z and W can be separated according
to binary image attributes, such as male/female, young/old or smiling/not smiling.
This is done by using a pre-trained neural network for each attribute (40 in total), to
classify the generated images into two classes. This classification is then be applied to
the corresponding points in the latent spaces Z and W , which are then separated using
a support vector machine (SVM) as shown in Figure 4.1.

Figure 4.1: Example illustration of separating latent vectors, labeled by male and female,
using a SVM. The dotted lines illustrate the margin between the hyperplane
and the the samples.

Support vector machines have been developed in 1995 by Cortes and Vapnik [CV95]
and describe a method of separating labeled data into two spaces by finding a hyper-
plane that divides the data by their classes while having the maximum margin to all
instances. Since this task is not always possible without increasing the dimension of
the space, some of the instances are then classified as the opposite to the classification
of the pre-trained neural network, leading to a new classification. The classification of
the pre-trained network and the classification of the SVM can then be compared by
calculating the conditional entropy.
The conditional entropy H(X|Y) measures ”how much additional information is re-
quired to determine the true class of a sample, given that we know on which side of
the hyperplane it lies” [KLA18a]. This means that similar classifications have a low
conditional entropy and vice versa.
The conditional entropy is defined by the following expression [CT06, p. 16], where Y

4.2 Perceptual Path Length 15

is a set of instances classified by the SVM and X is a set of instances classified by a
pre-trained network:

H(X|Y) = −
∑
y∈Y

p(y)

[∑
x∈X

p(x|y) log p(x|y)

]
(4.1)

In order to determine the LS value 200k images are generated by the generator net-
work and then classified by 40 different pre-trained networks into binary classes. The
resulting 200k outputs of the classification networks are then sorted by confidence, in
order to filter the least 50% confident outputs. After that, a SVM is applied to deter-
mine a spacial classification of the latent-space points in Z or in W, corresponding to
the image classification from the pre-trained network for each image attribute. At last,
the conditional entropy between the network classification and the SVM classification is
calculated and summed up for each attribute, leading to the following expression:

LS = exp

(∑
i

H(Xi|Yi)

)
(4.2)

Here Yi stands for the predicted class by the SVM and Xi for the predicted class by the
pre-trained network. i denotes the index of the current attribute (1 ≤ i ≤ 40).
In the end the result is also exponentiated to receive a value with linear scale instead of
a logarithmic scale, which the conditional entropy operator produced.
A low LS score therefore indicates similar classifications from the pre-trained neural
network and the SVM, indicating a well disentangled latent space.

Since the computing time of the LS metric takes about 21 hours when using a single GTX
1080 Ti, this metric will only be applied when comparing the results of the baseline model
to the results of the paper in section 5.1.3 and when analyzing the mapping network
in section 5.5. For the same reason the LS will only be calculated for a single model
checkpoint, instead of generating a graph over the course of the training.

4.2 Perceptual Path Length

The PPL is a metric that measures the smoothness of image transitions when interpo-
lating between two latent vectors v0 and v1 within the latent spaces Z and W . The
idea behind this metric is, that a well disentangled latent space should only show small
differences in the output images when interpolating through it while heavily entangled
latent spaces show big differences.

16 Disentanglement Metrics

Like the LS metric, the PPL can also be applied to both latent spaces Z and W . The
only difference being, that in the disentangled latent space W linear interpolation (lerp)
4.3 is applied, while using spherical interpolation (slerp) 4.4 [Sho85] within the latent
space Z. This is done to prevent the interpolation paths, within the latent space Z, to
”traverse locations that are extremely unlikely” [Whi16], since the latent vectors were
sampled from a Gaussian distribution during the training.

lerp(v0, v1, t) = (1− t) · v0 + 1 · v1 (4.3)

slerp(v0, v1, t) =
sin (1− t)θ

sin θ
· v0 +

sin tθ

sin θ
· v1 (4.4)

In the spherical interpolation equation, θ denotes the angle between the two vectors v1
and v2 (θ = cos−1 v1·v2

|v1|·|v2|) [Sho85].
Both interpolation techniques are illustrated in figure 4.2, showing interpolation paths
within a simplified three-dimensional latent space.

Figure 4.2: Example illustration of an interpolation path between two vectors within the
simplified latent spaces Z (a), using spherical interpolation and W (b), using
linear interpolation.

In order to calculate the PPL value, first two random latent vectors (z1, z2 or w1, w2) are
sampled, using the same random distribution that was used during training. Those two
vectors are then used to calculate a third latent vector, the interpolation vector (zslerp
or wlerp), along the corresponding interpolation path between the two random vectors.
This interpolation vector can either be calculated by the ’full path sampling’ method or
the ’endpoint sampling’ method.

4.2 Perceptual Path Length 17

When using the ’full path sampling’ method, this interpolation vector is placed at any
random position of the interpolation path, as shown in Figure 4.3 (a), while when using
the ’endpoint sampling’ method, the interpolation vector is placed on top of one of the
endpoints z1 or w1, as shown in Figure 4.3 (b).
After the interpolation vector has been determined, a new vector zε or wε, placed close
to the interpolation vector, is calculated, by moving along the interpolation path for
distance of 0.01% of the length of the path (ε = 10−4).

Figure 4.3: The difference between full path sampling method (a), where the interpo-
lation vector is set at a random position along the interpolation path and
endpoint sampling (b), where the interpolation vector is placed at the posi-
tion of one of the endpoints.

The resulting output images of the latent vectors zslerp / wlerp and zε / wε are then
generated and compared by calculating the distance of the embedding vectors from a
pre-trained network. The therefore chosen network is the VGG16 model [SZ14], which
is a deep neural network used for image classification and detection.
The result of the PPL metric is then determined by calculating the expected value of
image distances for a large amount of random vector pairs z1 and z2 (100k pairs in the
implementation [KLA18c]), leading to the following two expressions (4.5 for latent space
Z and 4.6 for W):

PPLZ = E
[

1

ε2
d(G(slerp(z1, z2, t)), G(slerp(z1, z2, t+ ε)))

]
(4.5)

PPLW = E
[

1

ε2
d(g(lerp(f(z1), f(z2), t)), g(lerp(f(z1), f(z2), t+ ε)))

]
(4.6)

Here f denotes the mapping network, g the synthesis network and G is the generator
that combines f and g (G = g ◦ f). d is the distance between the embedding vectors of
the VGG16 model. When using full path sampling t is sampled from U(0, 1) and when
using endpoint sampling t ∈ {0, 1}. At the end the result is normalized by dividing the
output of d by ε2.
Similar to the LS metric, a low PPL value indicates less entanglement of the latent
space.

5 Ablation Study

An ablation study is an analysis method that has its origins in medical literature. It
was commonly used in the field of neuroscience to understand complex systems such as
the nervous system and especially the human brain [Mey+19]. The idea of an ablation
study is to remove single components from a complex system to compare the behaviour
of the system before and after, in order to understand the components influence on the
whole system.
This thesis will apply the ablation study technique on the StyleGAN model by training
the StyleGAN from scratch after removing and modifying its main components. The
results of these experiments will then be compared to a baseline model. A baseline model
is a model that was trained with all components activated and default parameters taken
from the StyleGAN paper [KLA18a].

5.1 Baseline Model

The default configuration that will be used as reference for all experiments was taken
from the official tensorflow implementation of the StyleGAN, published by Tero Karras
[KLA18c]. It has all parameters set as default, in order to reproduce the same results
from the paper and also provides scripts to run the metrics described in section 4.
Although the StyleGAN is capable of generating images at a resolution of 1024x1024
pixels, all the following experiments were trained on a lightweight version of the network
that only uses a 256x256 output resolution to reduce the overall training time. In order
to reduce the training time even further, the network will also only be trained for 15
million training images, instead of 25 million as done by the Nvidia research group.
With this configuration a whole training takes about 14 days using a single GTX 1080
Ti and 8 days using two.
To achieve the high resolution results from the paper, the Nvidia research group has
trained the StyleGAN using 8 Tesla V100 GPUs for 6 days and 14 hours [KLA18c].

19

20 Ablation Study

5.1.1 Loss Functions

The loss functions that were used in the baseline model are the ’logistic nonsaturating
loss’ for the generator and the ’logistic loss with simple gradient penalty’ for the dis-
criminator [KLA18c]. Both of these loss functions were designed closely to the value
function V (D,G), from section 2.1:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (5.1)

Logistic Nonsaturating Loss

The logistic nonsaturating loss has its origin from Ian Goodfellow et. al, who have intro-
duced this loss function along with the ’Generative Adversarial Nets’ paper [Goo+14].
It can be described by the following expression:

LossG =
1

N

N∑
i=1

− log (σ(D(G(zi)))) (5.2)

where N is the batch size, zi is the noise input for the generator and σ is the logistic
sigmoid function:

σ(x) =
1

1 + e−x
(5.3)

The word ’nonsaturating’ describes that the loss function was designed to maximize
the term log (σ(D(G(zi)))) instead of minimizing log (1− σ(D(G(zi)))), as implied by
the right addend of the value function V (D,G) (5.1). Doing so prevents the loss from
saturating, when the discriminator outperforms the generator, which is often the case at
the beginning of the training [Goo+14] and could lead to non-convergence of the model
parameters.

Logistic Loss with Simple Gradient Penalty

The logistic loss with simple gradient penalty, used for the discriminator loss in the
StyleGAN, is a loss function that first calculates the loss as suggested by the value
function V (D,G) 5.1 with the following expression:

LossD =
1

N

N∑
i=1

− [log (σ(D(xi))) + log (σ(D(G(zi))))] (5.4)

5.1 Baseline Model 21

and then adds the sum of the gradients of the discriminator loss over the fake outputs,
multiplied by a design parameter γ that controls the magnitude of the gradient penalty:

LossGPD = LossD + γ∇

(
1

N

N∑
i=0

− log (σ(D(G(zi))))

)
(5.5)

Here xi are the real images from the training dataset and G(zi) are the fake images
produced by the generator.
By adding the gradients to the loss function, the parameters of the discriminator are
enforced to be small, which leads to a more stabilized training.

5.1.2 Training Dataset

The training dataset that was used throughout the whole ablation study is the Flickr-
Faces-HQ (FFHQ) dataset. This dataset was also created and published by Tero Karras
et al. along with the StyleGAN paper [KLA18a].
The dataset consists of 70 000 images of faces at a 1024x1024 resolution that were au-
tomatically aligned, cropped and filtered [KLA18b] to provide a high resolution dataset
with few noise and similar spacial distributions. Example images of the FFHQ dataset
are shown in Figure 5.1.
During the training the images were augmented by randomly flipping them along the
vertical axis.

Figure 5.1: Example images of the FFHQ dataset.

22 Ablation Study

5.1.3 Training Results

After training the StyleGAN model with the default configuration described in 5.1, the
generator produced an image distribution with the following metric scores shown in
Table 5.1 and Figure 5.2:

Metric Baseline Model Paper Results
FID 6.05 4.40
PPL W (end) 60.9 195.9
PPL W (full) 70.7 234.0
PPL Z (end) 210.4 666.1
PPL Z (full) 209.8 664.9
LS W 3.6 3.7
LS Z 169.6 165.0

Table 5.1: Metric scores of the baseline model and the results of the StyleGAN paper
[KLA18a], [KLA18c] (the LS and PPL were measured at the model check-
points with the lowest FID). Lower is better for all metrics.

Figure 5.2: (a) FID during the training of the baseline model, starting at 6 million
training images. (b) The PPL values over the course of the training of the
baseline model. (lower is better)

Fréchet Inception Distance

Compared to the results of the StyleGAN paper, the FID of the baseline model is 1.65
higher. This is most likely due to the shorter training and some stochastic variation,
since the training of GANs is non-deterministic. The trend of the FID graph in Figure

5.1 Baseline Model 23

5.2 also shows that the FID will probably decrease even further if given more training
time. Another reason for the margin in FID can be the difference in output resolution
of the two models. Even though the images from the dataset, that the generated images
are be compared to in the FID metric, also only have a resolution of 256 x 256, it still
might impact the FID value.

Perceptual Path Length

Although the FID is worse in the baseline model, it turns out, that the latent spaces
are, according to the PPL metric, much more disentangled in the baseline model than
in the results of the StyleGAN paper. While for instance the PPL (in W with full path
sampling) is 70.7 for the baseline model, the results from the paper scored 234.0, which is
more than three times as much. One explanation for this discrepancy might be, that the
high resolution models have to fit more information and variation into the same latent
space than the low resolution models. This then can lead to stronger image transitions
when interpolating through the latent space.

The graphs for the PPL and FID in Figure 5.2 show that even though the FID improves
over the course of the training, the entanglement of the latent spaces keeps increasing.
This indicates that improvements in FID come at a cost of the latent space entanglement.
The same effect was also observed by the Nvidia research group (Tero Karras, et. al),
who is referring to future work to analyze ”whether this is unavoidable, or if it were
possible to encourage shorter path lengths without compromising the convergence of
FID” [KLA18a].
It is also noticeable, that the graphs for the full path sampling and the endpoint sampling
in the latent space Z are very similar to each other. This is because the latent space
Z does not have any kind of mapping and is therefore equally defined throughout the
whole interpolation path between two random vectors, given they were sampled from a
Gaussian distribution and spherical interpolation was applied. For this reason, in this
thesis, only one of the sampling methods will be applied when calculating the PPL in
the latent space Z.

Linear Separability

According to the LS metric both disentangled latent spaces are similarly well separable.
This indicates that the binary attributes used in the LS metric do not focus on such fine
details, which would only be visible in higher resolutions and also that the mapping of
the latent space does not change a lot after 15 million training images.

24 Ablation Study

Generated Images

When inspecting the generated images at the model checkpoint with the lowest FID of
6.05, most faces look very realistic and have a lot of detail and variation considering age,
gender, hair and many other attributes as shown in Figure 5.3.
Some of the images, although, can still be easily detected as fakes due to unusual shapes
in the background (Figure 5.4 a), faces covered by poorly defined objects such as micro-
phones (Figure 5.4 b), water droplet like artifacts at the edge of the faces (Figure 5.4 c)
or unnatural face shapes (Figure 5.4 d).
The water droplet like artifacts will be further analyzed in section 5.6 about the AdaIN
operator.

Figure 5.3: Examples for realistic looking images generated by the baseline model at the
checkpoint with the lowest FID.

Figure 5.4: Example images with poor quality generated by the baseline model at the
checkpoint with the lowest FID, due to (a) unusual shapes in the background,
(b) faces covered by objects with bad quality, (c) water droplet effects, or
(d) unnatural face shapes. All images have been generated by the baseline
model at the checkpoint with the lowest FID.

5.2 Style Mixing 25

5.2 Style Mixing

The first component that will be analyzed in the ablation study is the style mixing
technique. Style mixing is a regularization method, developed by Tero Karras, et. al
[KLA18a], that combines the styles from two images by exchanging the latent vectors
for the AdaIN operations during a forward pass at a random layer within the generator.
This regularization method was designed to ”prevent the network from assuming that
adjacent styles are correlated” [KLA18a]. Mixing the latent vectors then ideally leads
to more image variation and decreases the chance of mode collapse.
The style mixing component is realized by first calculating the disentangled vectors w1

and w2 for two different latent vectors z1 and z2. After that, a random layer-index is
determined at which w1 will be replaced by w2 for all further AdaIN operations within
the generator.

Figure 5.5: Generator output of the baseline model when exchanging the latent vector
from style 1 with the latent vector from style 2 for one resolution block. It
shows that earlier layer (with 4x4 to 32x32 resolution) of the generator mostly
affect coarse attributes such as pose, age or gender and later layer (with
64x64 to 256x256 resolution) mainly affect finer face details, the background
textures and the brightness.

Figure 5.5 shows that depending on the depth of the layer at which the latent vector
is swapped out, different attributes of the face will be affected. Earlier layers (with
4x4 to 32x32 resolution) of the generator mostly affect coarse attributes such as pose,
age or gender while later layers (with 64x64 to 256x256 resolution) mostly affect finer
details, background textures and the brightness of the image. Figure 5.5 shows that for

26 Ablation Study

example the glasses and the hat of the lower two rows disappear when mixing at the
4x4 or 8x8 layer, while only some details in the background gets changed when mixing
at the 128x128 layer.
According to the results of the StyleGAN paper [KLA18a], it turned out to be best to
train the StyleGAN by mixing two latent vectors during training, while using only one
during image synthesis [KLA18c]. Better results were also achieved when only applying
the style mixing to 90% of the training iterations [KLA18a, Table 2].
For the ablation study, a new StyleGAN model will be trained without the style mixing
component, meaning that the model will only use one single latent vector throughout
all AdaIN operations.

Removing Style Mixing

Training the StyleGAN model without the style mixing component, turned out to be
very unstable. The graph for the FID in Figure 5.6 (a) shows that until 12 million
training images, the model performed similarly to the baseline model, scoring a FID of
6.49 at best, but reaches very large values after 12 million training images that go up to
60.48.

Figure 5.6: (a) FID of the baseline model (lowest 6.05) and model without the style
mixing component (lowest 6.49), starting at 3 million training images seen
by the discriminator. (b) The perceptual path length over the training of
the baseline model and the model without style mixing. (lower is better for
both metrics)

The spike in FID, after 12 million training images, can also be observed when inspecting
the generated images from the model checkpoints over the course of the training. Figure
5.7 shows the images generated by the StyleGAN model trained without Style Mixing,
before and after that spike. It is visible that although the generated faces have lost a
lot of quality after the 12.1 million checkpoint, the images still show the same coarse

5.2 Style Mixing 27

features such as pose, gender or hair and also have kept the same color. Considering
that the earlier convolutions of the StyleGAN mostly affect the coarse attributes and the
latter convolutions affect the color and brightness, as shown in Figure 5.5, it indicates
that mostly the weights of the intermediate layers were very unstable at the spike in FID
while the weights of the first and last layers remain similar. Although Figure 5.5 has been
created by the baseline model, the same results, on which layers control which attributes,
were observed with the StyleGAN model without the Style Mixing component.
Another reason why the images still show similar coarse attributes and colors, even
though the training has become very unstable, is the exponential moving average of the
generator weights, discussed in section 5.9, which is a method to prevent drastic changes
of the model parameters.

Figure 5.7: Output images of the model without Style Mixing, showing the images before
and after the spike in FID at 12 million training images.

When comparing the perceptual path length of the baseline model to the modified model
trained without style mixing throughout the training in Figure 5.6 (b), it shows that the
entanglement in both latent spaces W and Z is lower without the style mixing compo-
nent. This observation was also made by the Nvidia research group, who hypothesized
that the added variation, caused by the style mixing, makes it more difficult for the
mapping network to keep the latent space disentangled [KLA18a].

In order to be certain that the training instability was caused by the missing style mixing
component, both the baseline model and the model without style mixing should have
been trained multiple times. Due to the long computing time of up to 14 days, this was
not possible without leaving out other experiments.
However compared to all future experiments, which are similar to the baseline model,
the style mixing experiment was the only experiment in which this instability and such
large spikes in FID could be detected.

28 Ablation Study

5.3 Stochastic Variation

The second experiment will analyze the stochastic variation component of the Style-
GAN. This component was designed to realistically transfer random features of real
human portraits, ”such as the exact placement of hairs, stubble, freckles, or skin pores”
[KLA18a] onto the generated images, by providing the generator with additional noise.
Traditionally the generator network only receives the noise through the input layer of the
network, causing it to invent a way to create variation in each layer only from previous
activation layers. Doing so uses up network capacity and can cause repetitive patterns
in the output images [KLA18a].
The stochastic variation component used in the StyleGAN architecture avoids both of
those problems by adding pixel-wise Gaussian noise to the generator network, after each
convolution layer, as shown in Figure 5.8 a.
The noise that is added will also be multiplied by a trainable weight which is initially
set to zero. This way the generator can control itself how much noise will be added in
each layer.

Removing Stochastic Variation

For the following experiments the stochastic variation component will be examined, by
first analyzing the results of the baseline model when turning off the stochastic variation
after it has been trained using it and second by training a new StyleGAN model without
utilizing the component at all, as shown in Figure 5.8 b.

Figure 5.8: Baseline generator (a) compared to the modified generator without stochastic
variation (b). (Inspired by [KLA18a, Figure 1])

5.3 Stochastic Variation 29

First, the baseline model with and without noise and the model trained without stochas-
tic variation are compared, according to their FID values. It shows in Figure 5.9 that the
baseline model with and without stochastic variation produce very similar FID values,
while the FID of the model trained without stochastic variation converges bit slower at
the start of the training. This suggests that the stochastic variation component helps
the StyleGAN model to converge faster to the distribution of the training dataset at the
beginning of the training, although has only little effect on the FID when turning it off
after it has been trained using it.
Between the three models the lowest FID value was measured at the baseline model
without stochastic variation with a FID of 6.04 followed closely by the baseline model
with stochastic variation with 6.05. The model trained without stochastic variation
performed the worst scoring the highest FID of 6.19.

Figure 5.9: FID compared between the baseline model with stochastic variation (lowest
6.05) and without stochastic variation (lowest 6.04) and the new StyleGAN
model that was trained without stochastic variation (lowest 6.19), starting
at 8 million training images shown to the discriminator (lower is better).

When inspecting the images generated by the baseline model with and without noise
(Figure 5.10 a and b), it shows that when training with noise and removing it in image
synthesis, a lot of detail and structure from the skin and the hair disappears and also
the background textures become a lot smoother.
Figure 5.10 c also shows the standard deviation of 100 images that were generated using
the same input vector. The brighter an area is the more it was changed by the added
noise. The resulting standard deviation image underlines that the stochastic variation
component mainly impacts the fine details of the face such as the hair, the skin pores
or the background textures as described by the StyleGAN paper [KLA18a].
A reason why the baseline model without noise actually performed slightly better in
FID than with noise, could be that the background textures of the images become more
blurry when generated without noise, which is also often seen in the images of the FFHQ
dataset.

30 Ablation Study

Figure 5.10: Image generated by the baseline model with (a) and without (b) noise. (c)
shows the standard deviation of 100 generated images using the same latent
vector, revealing which attributes are affected the most by the stochastic
variation.

The difference between the images generated by the baseline model and the model trained
without the stochastic variation component is hard to spot by hand, since they both
create an image distribution with similar FID results. Although when observing the
frequency spectrums of each image distribution by calculating the average 2D-Fourier
transformation over 1000 generated images, it shows that the model trained without
noise shows some spikes within the frequency spectrum (Figure 5.11 c), while the fre-
quency spectrums of the baseline model with and without noise do not (Figure 5.11 a and
b). Those spikes indicate that the generated images show repetitive patterns with the
same frequencies, when trained without the component, as predicted in the StyleGAN
paper.

Figure 5.11: Average absolute values of the 2D-Fourier transformation for 1000 gener-
ated images from (a) the baseline model, (b) the baseline model without
noise and (c) the model trained without noise, indicating repetitive patterns
with similar frequencies.

5.4 Truncation Trick in W 31

5.4 Truncation Trick in W

The truncation trick, which was introduced by Andrew Brock, et. al in 2018 [BDS18],
is a method to improve the generated image quality at the cost of image variation. The
main idea of the truncation trick is to train the GAN with latent vectors that have been
sampled from a random distribution, such as the normal distribution N (0, 1), while
using a truncated latent vector during image synthesis [BDS18].
Truncating a vector describes the transformation of a vector towards the average vector,
if its distance to the average vector of the latent spaces exceeds a chosen threshold.
In traditional GANs, where the latent vectors are drawn from a normal N (0, 1) or
uniform distribution U(0, 1), the average vector would be the zero vector. But since the
StyleGAN uses a mapped latent space W , the corresponding average vector has to be
approximated by a moving average that will be updated in each training iteration.
The approximated average vector is first initialized with zeros and then interpolated
towards the batch average for each training iteration. The interpolation factor that was
chosen by the Nvidia research group is 0.005 [KLA18c], leading to the following update
operation:

w̄init = ~0 (5.6)

w̄new = 0.995 · w̄old + 0.005 · 1

N

N∑
i=1

wi (5.7)

where N is the batch size and w the batch of mapped latent vectors (w = {w1, ..., wN}).

After the training, this approximated average vector w̄ can be used to truncate the
latent vectors, used for image synthesis, by linearly interpolating in-between them. The
magnitude of interpolation ψ then determines how close the latent vector will be moved
towards the average vector:

w′ = (1− ψ) · w̄ + ψ · w (5.8)

Figure 5.12 shows the output images of the baseline model for the same latent vectors
at different ψ magnitudes. When setting ψ = 0 the latent vector will be replaced by the
average vector, meaning that the corresponding output image shows the average face of
the latent space W .
The higher the value of ψ is set, the further the distance between the latent vector
and the average vector is, resulting in generated images with more variation, although
slightly less quality, since the latent vectors are moved towards extreme regions of the
latent space [KLA18a].

32 Ablation Study

Figure 5.12: Images generated with different truncation values ψ ranging from 0.0 (show-
ing the image of the average vector) to 1.4, where 1.0 shows the image of
the latent vector without the truncation. With increasing ψ, the variation
of the images is increased.

In order to find the best trade-off between image quality and image variation, Figure
5.13 plots the FIDs at different ψ values. The graph shows that the FID is lowest when
ψ = 1.0, which means that the best FID results were achieved, when the truncation
trick was deactivated. This is because the FID penalizes the image quality and image
variation at the same time.

Figure 5.13: The FID over different truncation values ψ (PSI), showing that the best
trade-off between quality and variation, according to the FID, is at ψ = 1.0,
where the truncation trick is turned off.

Due to the loss in variation when using a ψ lower than 1.0, the FID scores worse even
though the image quality might have improved. For that reason the truncation trick
will only be applied for generating few example images with impressive quality instead
of improving the scores of the metrics.

5.5 Mapping Network 33

The generated images using a ψ greater than 1.0 also scored worse in FID although the
variation kept increasing. This underlines that the image quality decreases for increasing
ψ values and suggests that the image quality is better for lower ψ values, which was so
far only claimed by examining the images from Figure 5.13 by hand.
For the example images, shown in the StyleGAN paper [KLA18a] and on the GitHub
page [KLA18c], the research group Tero Karras et. al have chosen to generate the images
with a ψ value of 0.7.

5.5 Mapping Network

The mapping network is a component of the generator network, introduced in the Style-
GAN paper [KLA18a]. It is designed to disentangle the latent space Z in order to
provide a latent space W with well separable linear subspaces each corresponding to sin-
gle image attributes [KLA18a]. A disentangled latent space is desirable since it is easier
for the generator to produce realistic images from a disentangled latent space than from
an entangled latent space [KLA18a].
The mapping network was realized in the StyleGAN implementation by using a fully
connected neural network with a depth of 8 layers as shown in Figure 5.14 a. The fol-
lowing experiment will remove the mapping network and use the vectors from the latent
space as style inputs for AdaIN operations, as illustrated in Figure 5.14 b.

Figure 5.14: Baseline generator (a) compared to the new generator without the mapping
network (b). (Inspired by [KLA18a, Figure 1])

34 Ablation Study

Removing the Mapping Network

When training the StyleGAN without the mapping network, it shows in Figure 5.15 (a)
that the FID increases from 6.05, scored by the baseline model, to 7.26. This margin in
FID is retained throughout the whole training, indicating that by removing the mapping
network the overall generated image quality or variation is decreased.

Figure 5.15: (a) FID over the training compared between the baseline model (lowest
6.05) and the model trained without the mapping network (lowest 7.26),
starting at 6 million training images seen by the discriminator. (b) PPL
of the baseline model compared to the model trained without the mapping
network over the course of the training (lower is better for all metrics).

Inspecting the entanglement of both networks, by calculating the LS metric, shows
that the trained model without the mapping network is much more entangled than the
baseline model. While the baseline model had scored a LS value of 3.6 in the disentangled
latent space W , the modified model scored a LS value of 8.4 in the latent space Z, which
is more than twice as much.
However, when comparing the LS value of the model without the mapping network to
the LS value of the baseline model in the latent space Z, it shows that the baseline
model has a much more entangled latent space Z. There the baseline model scored a
LS value of 169.6.

Similar results were received by the PPL metric, as shown in Figure 5.15 (b). Comparing
the PPL value from the latent space W for the baseline model to the PPL for the model
without the mapping network, shows that the baseline model is less entangled. Although
compared to the PPL of the baseline model for the latent space Z, the latent space Z
of the model without the mapping network is a lot less entangled.

Both results of the LS and the PPL metric suggest that the generator strives to dis-
entangle the latent space even without a mapping network, although with less success

5.6 Adaptive Instance Normalization 35

than the mapping network. Doing so might also use up some of the network capacity of
the generator, which also explains the higher FID.

Observing the produced images of the two models did not show any recognizable differ-
ences or artifacts.

5.6 Adaptive Instance Normalization

As described in section 5.6, the AdaIN operation is used in the StyleGAN model to
transfer the ’styles’, in the form of latent vectors, from the mapping network onto the
synthesis network, in order to control the attributes of the output images.
For the ablation study this component can not be fully removed since it makes the only
connection between the mapping network and the generator network and therefore, if
removed, would also disconnect the input latent vector from the output image. For that
reason the ablation will only be applied to the instance normalization of the AdaIN
operation.

Removing Instance Normalization

When removing the instance normalization from the AdaIN component, only the mul-
tiplication with standard deviation of the style and the addition with the mean of the
style remains. This changes the AdaIN operation from the expression:

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y) (5.9)

to the new expression:

Ada(x, y) = σ(y)x+ µ(y) (5.10)

When comparing the FID between the baseline model and the model without the in-
stance normalization in Figure 5.16 over the course of the training, it shows that the
FID of the modified model is lower at every checkpoint than the baseline model. While
the baseline model scored a FID value of 6.05 at best, the modified model reached a
value of 5.68, which is 0.38 lower.

An explanation for this improvement in quality, measured by the FID metric, can also be
found when observing the generated images of the two models. While the baseline model
had produced many images with water droplet like artifacts, as previously mentioned
in section 5.1.3 and as shown in Figure 5.17 a, the model trained without the instance
normalization do not show any artifacts (Figure 5.17 b).

36 Ablation Study

Figure 5.16: FID of the baseline model (lowest 6.05) and the model trained without
instance normalization (lowest 5.68) over the course of the training, starting
at 6 million images seen by the discriminator (lower is better).

Figure 5.17: (a) images generated by the baseline model, which are showing water droplet
like artifacts and (b) images generated by the model trained without in-
stance normalization, with no water droplet like artifacts.

5.7 Minibatch Standard Deviation 37

In the updated version of the StyleGAN [Kar+19], the Nvidia research group also ad-
dresses these water droplet like artifacts. They explain them as a side effect of the AdaIN
function, where the generator tries to pass information through the AdaIN operation ”by
creating a strong, localized spike that dominates the statistics” [Kar+19].
This explanation can be underlined by inspecting the normalized feature maps of the
generator for the images with water droplet artifacts. They show (in Figure 5.18 a)
that the feature maps indeed have strong, localized spikes at the locations of the arti-
facts, while the images, generated by the model without instance normalization, show
no spikes in the feature maps at all (Figure 5.18 b).
To resolve this issue, the research group did not remove the instance normalization,
but instead replaced the whole AdaIN operation with a ’demodulation’ operation that
applies the styles to the kernels of the convolution instead of the resulting feature maps
after the convolutions [Kar+19].

Figure 5.18: (a) Example image generated by the baseline model, which is showing a
water droplet like artifact, with the corresponding normalized feature maps,
showing a strong, localized spike. (b) Example image generated by the
model trained without instance normalization, which show no water droplet
like artifacts and no spikes within the normalized feature maps.

5.7 Minibatch Standard Deviation

Minibatch standard deviation is a technique to prevent mode collapse. It was first in-
troduced in the paper on the progressive growing of GANs by Tero Karras et al. in 2018
[Kar+17]. Inspired was this technique from the minibatch discrimination, introduced by
Salimans et al. in 2016 [Sal+16].
The concept of minibatch discrimination is to provide the discriminator with information
about the batch statistics. That is done by multiplying the output of an intermediate
layer in the discriminator with a trainable tensor and then comparing this product to
the products of other instances from the current batch by determining the L1 distance
[Sal+16]. Given this information, it is easier for the discriminator to tell whether a batch
comes from the training data or from the generator if the generator produces only little
variation within a batch of images. The generator is then enforced to produce batches of
images with as the same amount of variation as the batches from the training dataset.

38 Ablation Study

As a result, the chance of mode collapse is reduced.
The minibatch standard deviation takes the idea of the minibatch discrimination and
improves it [Kar+17] while also simplifying it. Instead of using a trainable tensor and
calculating the L1 distances across all batch instances, the minibatch standard deviation
simply appends a new feature map that consists of the standard deviation of all feature
maps from the current layer across the whole batch [Kar+17].
For the following experiment the StyleGAN will be trained without the minibatch stan-
dard deviation component.

Removing Minibatch Standard Deviation

After removing the minibatch standard deviation from the discriminator, the model
scored worse in terms of FID. As shown in Figure 5.19 the FID only gets as low as 7.47,
which is 1.42 higher than the baseline model.

Figure 5.19: FID of the baseline model (lowest 6.05) and the model trained without
minibatch standard deviation (lowest 7.47) over the course of the training,
starting at 6 million images seen by the discriminator. (lower is better)

The reason for the higher FID can most likely be attributed to less variation produced
by the generator. This, however, was not detectable when observing the image by hand.
A hint that the variation has decreased, might be that the images showed a similar
quality to the images of the baseline model, although scored a different FID. This can
indicate a difference in variation, since the FID penalizes both the quality and the
variation at once.

5.8 Progressive Growing 39

5.8 Progressive Growing

As described in 5.8 the StyleGAN uses a progressively growing structure to stabilize and
speed up the training in early iterations by slowly increasing the output resolution at
the beginning of the training.
With the baseline configuration, defined in 5.1, the model starts the training with an
initial resolution of 8x8 pixels. This is then doubled every 1.2m training images, until
the full resolution of 256x256 is reached. With the first 600k training images after each
new layer was added, the output of the generator is calculated by interpolating between
the output of the new layer and the upsampled output from the earlier layer. Doing so
provides smooth transitions between each resolution step.
Figure 5.20 shows the output images of the baseline generator for the same latent vector
over the course of the beginning of the training.
For the following experiment the StyleGAN model will be trained without the progres-
sively growing structure, by setting the initial output resolution to the full resolution of
256x256 pixels.

Figure 5.20: Increasing image resolution of the baseline model. After 5.4 million training
images, the full resolution of 256x256 is reached.

Removing the Progressively Growing Structure

When removing the progressively growing structure from the StyleGAN model, it shows
in Figure 5.21 that the FID converges much faster than it did with the baseline model,
considering the number of training iterations. On the one hand, this is because the FID
reaches very large values when evaluating images that have different resolutions and on
the other hand this is because the discriminator receives much more information when
training with images of higher resolution.
After about 10 million training images, both models have reached very similar FIDs with
slightly lower FID from the baseline model than from the modified model. At best the
modified model scored a FID of 6.35 which is 0.29 higher than the 6.05 scored by the
baseline model.
The aforementioned speedup that comes with the progressively growing structure amounts

40 Ablation Study

a total difference of 6 hours. While the model without progressive growing trained for 8
days and 6 hours, the model with progressive growing only trained for 8 days.

Figure 5.21: FID of the baseline model (lowest 6.05) and the model trained without
progressive growing (lowest 6.35) over the course of the training. (lower is
better)

Observing the output of the generator from the model without progressive growing at
the beginning of the training in Figure 5.22, shows that the generated images first look
very similar to each other. This indicates that the model tends to mode collapse at the
beginning. However after 120k training images, the model recovers from mode collapse
and produces images with more variation.
When inspecting the images from the fully trained model at the checkpoint with the
lowest FID, most images look very realistic with similar quality to the images from the
baseline model.

Figure 5.22: Generator output of the model trained without the progressively growing
structure at the beginning of the training. At 40k and 80k training images,
the model is showing some mode collapse, which however disappears after
120k training images.

5.8 Progressive Growing 41

A reason why the model performs well even without the progressively growing structure,
might be that the full resolution of 256x256 is much lower compared to the full resolution
of 1024x1024 that was used in the paper. When training the model with an output
resolution of 1024x1024 without the progressively growing structure, the model would
probably fully mode collapse at the beginning of the training, with a low chance of
recovering.

Although the generated images of the baseline model and the modified model have very
similar quality, one difference can be seen by examining the location of attributes when
interpolating in-between two images with different face poses. While in the baseline
model attributes such as teeth or eyes seem to be stuck in place when interpolating
in-between different poses, the attributes in the model without the progressive growing
seem to be moving freely around. For example when inspecting the location of the teeth
in the baseline model in Figure 5.23 a, it shows that even though the pose of the face
changes after the interpolation, the teeth remain in the same position, which results in
images with teeth that are unaligned to the rest of the face.
Figure 5.23 b shows that in the images of the modified model, the teeth move accordingly
to the rest of the face, making it look more realistic.

Figure 5.23: Demonstration of the ’phase artifacts’. (a) shows images generated by the
baseline model and (b) images generated by the model without progressive
growing when interpolating in W . The green lines are placed in-between
the incisors to highlight that the teeth are at the same position in (a), which
makes the teeth unaligned to the rest of the face in the upper image, while
the teeth move accordingly to the pose of the face in (b).

These artifacts were also found by the Nvidia research group Tero Karras et. al [Kar+19].
They call these artifacts the ’phase artifacts’ and explain them as a side effect of the
progressively growing structure. The research group hypothesizes that since each layer
has to perform as an output layer at the beginning of the training, the feature maps
have higher frequencies, because the generator is enforced to produce images with high

42 Ablation Study

frequency details. The high frequencies are then causing the generator to be less shift
invariant [Kar+19]. To resolve this issue, the research group has removed the progres-
sively growing structure and replaced it with a residual architecture in the StyleGAN2
paper [Kar+19].

5.9 Exponential Moving Average of the Generator
Weights

One major problem that often occurs when training GANs is the instability of the model
parameters. A common solution to that problem is to apply a gradient penalty by mod-
ifying the loss functions as described in section 5.1.1.
Next to the gradient penalty the StyleGAN also uses the ’Exponential Moving Average
of the Generator Weights’ (EMA) component to stabilize the parameters, which was
introduced by Yasin Yazıcı [Yaz+18] in 2018.
Unlike the gradient penalty, the EMA does not have any influence on the training it-
self and instead only copies the weights from generator (Gtrain) onto a cloned generator
(Gsynthesis), which will only be used for image synthesis after the training. This synthesis
generator receives the current weights at every training iteration from the training gen-
erator and averages it by interpolating between the new and the old weights as described
by the following expression [KLA18c]:

Gsynthesis = β ·Gsynthesis + (1− β) ·Gtrain (5.11)

where β is a hyperparameter that controls the magnitude of how much the weights are
changed in each update. In the StyleGAN implementation β is set to 0.9997, which
means that in each training iteration the weights of the synthesis generator are interpo-
lated 0.03% towards the weights of the training generator.

Removing the Exponential Moving Average of the Generator
Weights

Since the EMA component does not affect the training itself, no new model has to be
trained. Instead, only the generator that was used in training Gtrain has to be observed.
This makes it a lot easier to detect the difference with and without the component, by
generating images from the same random input vector for both generators.

5.9 Exponential Moving Average of the Generator Weights 43

Figure 5.24 shows the training progress of Gtrain and Gsynthesis for the same input vector,
demonstrating that the generated images of Gtrain change a lot during the training while
Gsynthesis shows very smooth transitions between the training checkpoints.

Figure 5.24: Training progress of the baseline model without EMA (a) and with EMA
(b).

When comparing the FID of both generators over the training in Figure 5.25, it shows
that the FID is a lot lower for Gsynthesis, with a lowest value of 6.05, than Gtrain, with
the lowest value of 8.22. According to that result, the EMA component had the most
influence on the StyleGAN throughout the whole ablation study.

Figure 5.25: FID of Gsynthesis (lowest 6.05) and Gtrain (lowest 8.22) over the course of
the training, starting at 6 million training images (lower is better).

44 Ablation Study

5.10 Summary

The results of the experiments were mostly as anticipated. As soon as a component was
removed, the FID increased and the image quality decreased. This was the case with
the stochastic variation, the style mixing, the mapping network, the minibatch standard
deviation and the EMA component.
The highest change in FID was recorded after removing the EMA component in section
5.9, which increased the FID from 6.05 to 8.22.
Although most experiments scored worse results than the baseline model, removing the
AdaIN component and the stochastic variation from the baseline model actually im-
proved the FID. The overall best result was achieved, with a FID of 5.68, after removing
the instance normalization from the AdaIN component. The most likely reason for this
low FID is that the water droplet artifacts disappeared, which were visible in almost
every image, generated by the baseline model.
Another artifact that was observed in section 5.8 is the ’phase artifact’. Although this
artifact disappeared after removing the progressively growing structure, which made the
images look more realistically, the FID was still higher than the baseline model. This
concludes that progressive growing component both improves and harms the quality at
the same time.

A summary of all FID results from all experiments in the ablation study is shown in
Table 5.2.

Model FID FID Difference to Baseline
Baseline Model 6.05
Model without AdaIN 5.68 -0.37
Baseline Model without Stochastic Variation 6.04 -0.01
Model without Stochastic Variation 6.19 +0.14
Model without Progressive Growing 6.35 +0.30
Model without Style Mixing 6.49 +0.44
Model without Mapping Network 7.26 +1.21
Model without Minibatch Std. Dev. 7.47 +1.42
Baseline Model without Exp. Mov. Avg. 8.22 +2.17

Table 5.2: FID of all experiments in the ablation study sorted by FID.

6 Results on the Car Dataset

The following chapter will analyze the StyleGAN by training it with a different dataset
for more iterations and a higher output resolution, while applying some of the analysis
methods that were used in the ablation study. The therefore used dataset is the car
dataset, which was created by the chair for Multimedia Computing and Computer Vision
of the Augsburg University.

6.1 Car Dataset

The car dataset consists of 30 000 images of cars at resolutions ranging from 75 x 75 up
to 8688 x 5792. The cars themselves can be separated into 18 car manufacturers, most
of which are German car manufacturers such as Porsche, Opel or BMW.
Further information about the manufacturer and car color distributions of the car dataset
are shown in Figure 6.2.

Figure 6.1: Example images from the car dataset.

45

46 Results on the Car Dataset

Figure 6.2: Histogram of manufacturers and colors in the car dataset.

In order to train the StyleGAN model with the car dataset, all images need to have the
same size and a quadratic aspect ratio. For that reason, all the images with vertical
format were filtered, which removed 0.93%. The remaining images were then resized to
a resolution of 512 x 320, which is the resolution with the closest aspect ratio to the
average aspect ratio of all images and can be divided by two six times. This is necessary
for the progressively growing network structure in order to start the training with a
resolution with an even number of pixels. After that the images are padded with zeros
to a squared resolution of 512 x 512. An example for the padded training images at
different resolution can be seen in Figure 6.3.
Like with the FFHQ dataset, the images from the car dataset were also augmented by
flipping them along the vertical axis.

Figure 6.3: Example training image after padding with zeros and resizing.

6.2 Training Results 47

6.2 Training Results

The StyleGAN model was trained with the default configuration, taken from the Style-
GAN implementation [KLA18c], for 25 million training images at an output resolution
of 512 x 512. The whole training took about 16 days and 17 hours, using two GTX 1080
Ti’s.

Fréchet Inception Distance

Figure 6.4: FID over the training with the car dataset (lowest 7.11), starting at 5 million
images seen by the discriminator (lower is better).

The FID graph, shown in Figure 6.4, displays the FID over the course of the training.
At the beginning of the training the FID decreases very quickly due to the difference in
output resolution, until the full resolution is reached after 6.6 million training images.
From there on the FID slowly decreases as low as 7.70 at 10 million training images.
After 11 million training images the FID increases again and stays at about 14.2 for the
following 7 million training images. The FID then suddenly drops again after 18 million
images and from there on decreases further to the overall lowest value of 7.11.

A reason why the FID got stuck at 14.2 after 11 million training images might be that
the model reached a local Nash equilibrium. This hypothesis is supported when inspect-
ing the generated images. They shows that the images with the same input vector do
not change a lot in-between the training checkpoints. This hints to low gradients and
the convergence to a local Nash equilibrium.
While the networks usually struggle to recover after converging to a local Nash equi-
librium with diminishing gradients, this network suddenly did recover after 18 million
training images. The simple reason for this is that the training crashed at 18 million
training images, due to insufficient memory on the GPU server in order to store the

48 Results on the Car Dataset

models checkpoint. Then after continuing the training from the latest checkpoint, the
optimizer was reset, which enabled the network to leave the local Nash equilibrium.

Generated Images

Observing the output of the StyleGAN at the checkpoint with the lowest FID of 7.11,
shows that generator produces realistic looking cars with a lot of detail and variation in
car model, car color and background setting (Figure 6.5).
Next to the good images, some images also showed very unrealistic car shapes or unnat-
ural background patterns (Figure 6.6).
Also the water droplet like artifacts, that were discussed in section 5.6, can be found in
many generated images.

Figure 6.5: Example images generated by the StyleGAN with high quality.

Figure 6.6: Example images generated by the StyleGAN with bad quality.

6.2 Training Results 49

Average Image

Applying the truncation trick in W with a ψ value of 0.0, generates the approximated
average image of the StyleGAN. This average car, shown in Figure 6.7, has a grey color
and shows similarities to a Mercedes A-Class. This color matches well with the color
distribution of the dataset (Figure 6.2), since the colors white, black, silver and grey are
part of the five most common car colors. The similarities to the Mercedes A-Class could
hint to some mode collapse, considering that Mercedes is only the fifth most common
car manufacturer of the dataset.

Figure 6.7: The average car image. Created by generating the image using the average
latent vector in W .

Number Plates

Observing the number plates of the cars in the generated images, in Figure 6.8, shows
that most letters or numbers are either an eight or a zero. This indicates that the
generator mode collapsed for this specific factor of variation.
The same effect can also be observed in some of the results from the StyleGAN2 paper
[Kar+19, Figure 14].

Figure 6.8: Example images of number plates, showing that most of the generated num-
bers are zeros or eights.

50 Results on the Car Dataset

Stochastic Variation

To analyze the influence of the stochastic variation component for the car images, Figure
6.9 shows the standard deviation for 100 images that were generated using the same
random input vector. The brighter an area is, the more it got changed by the added
noise from the generator.
The standard deviation image indicates that mostly the number plates, the wheels, the
edges of the car and the car logos are affected by the stochastic variation.

Figure 6.9: Standard deviation of 100 images with the same seed, showing that the
random noise mostly affect the edges, the number plates, the wheels and the
car logos.

Style Mixing

Like in section 5.2, Figure 6.10 shows the output image when replacing the style input at
the AdaIN operations with a different style for one resolution in the generator. Similar
to the results from section 5.2, the first layer with a resolution of 4 x 4 changes the
orientation of the car, the middle layers with resolutions form 8 x 8 to 64 x 64 change
the car shape and the car color and the last layers with resolutions form 128 x 128 to
512 x 512 change small details and the overall brightness of the image.

Figure 6.10: Generator output when exchanging the latent vector of style 1 with the la-
tent vector of style 2 for one resolution block. Earlier layers of the generator
(4x4 - 16x16) affect the coarse attributes such as car orientation or shape,
while later layers (32x32 - 512x512) affect small details and colors.

7 Conclusion & Outlook

After training the StyleGAN with 9 different configurations for a total computing time
of more than 79 days, it showed that the StyleGAN is very robust to modifications and
does not rely on single components to perform well. This was especially observed after
removing important components such as the progressive growing, where the images after
the experiment still had a good quality and the FID was relatively low. The most likely
reason for that might be the lower output resolution, used throughout all experiments of
the ablation study. While the StyleGAN was originally designed to generate images at a
resolution of 1024x1024, the experiments were only made on a network with an output
resolution of 256x256, which simplifies and therefore stabilizes the training.
Also, in some of the experiments, for example in the experiment for the stochastic
variation component, the FID graph of the baseline model and the modified model
showed very similar results. In order to tell which one of the models performed better,
the experiment should be run multiple times or trained for more training iterations.
This although was not possible without compromising other experiments.
The biggest increase in FID was observed after removing the exponential moving average
and the the biggest decrease after removing the AdaIN component. For those two
components it would also be interesting to perform multiple experiments with only
slight modifications, instead of only turning it on or off. The AdaIN component could
then, for instance, be analyzed further by replacing the instance normalization with a
pixel or batch normalization. Furthermore the exponential moving average component
could be examined by selecting different values for the interpolation magnitude β.
Also, training the model leaving out multiple components at once could show interesting
results.

Although the training on the car dataset was corrupted by resetting the optimizer after
the training crashed, it still showed that the StyleGAN model also performs well on
datasets with fewer images that were not as carefully preprocessed, as in the FFHQ
dataset.
While the stochastic variation component was specifically designed to generate random
features of human portraits, it turns out that the generator also found use for the
component when training with the car dataset. Instead of freckles and hair placements
the network applied the noise to generate variation in number plates or car logos.
Further interesting studies on the car dataset can be made by training the StyleGAN
with labels, since the dataset is annotated with the car model, the car manufacturer and
the car color. This would allow the synthesis of images with specific requests.

51

52 Conclusion & Outlook

In conclusion, the ablation study showed that, on the one hand, the StyleGAN model is
well equipped with components that help the model to generate images of high quality,
whereas on the other hand some components create artifacts and decrease that image
quality. In the StyleGAN2 paper [Kar+19], the Nvidia researcher group resolved those
artifacts by rebuilding the model’s structure and replacing some of the components,
which led to significant improvements in FID.
Recent research, however, such as the paper from Joel Frank et al. [Fra+20], has already
found new artifacts in the StyleGAN images. This suggest that the model still has a lot
of potential and the generated images will become even more realistic in future.

List of Figures

2.1 Traditional architecture for generative adversarial networks 3
2.2 Example results of GANs by Ian J. Goodfellow 4
2.3 Example output with and without mode collapse 6
2.4 Two image distributions that are hard to compare without metrics 6
2.5 FID scores on modified images . 7
2.6 Example images for style transfer using the AdaIN operation 8

3.1 Traditional generator architecture graph 10
3.2 Progressively growing structure over the training progress 11
3.3 Progressive growing architecture . 12

4.1 SVM example illustration . 14
4.2 Linear vs. spherical interpolation illustration 16
4.3 Full path sampling vs. endpoint sampling 17

5.1 Example images of the FFHQ dataset . 21
5.2 FID and PPL Graph: Baseline Model . 22
5.3 Good example images generated by the baseline model 24
5.4 Bad example images generated by the baseline model 24
5.5 Generated images when swapping the styles in one layer 25
5.6 FID and PPL graph: Style Mixing . 26
5.7 Output images at the spike in FID without Style Mixing 27
5.8 Baseline generator graph compared to the generator graph without stochas-

tic variation . 28
5.9 FID Graph: Stochastic Variation . 29
5.10 Image with and without the noise details 30
5.11 2D-Fourier transformation for the generated images with and without

stochastic variation . 30
5.12 Images generated at different truncation magnitudes 32
5.13 FID over truncation graph . 32
5.14 Generator graph with and without the mapping network 33
5.15 FID and PPL Graph: Mapping Network 34
5.16 FID Graph: Adaptive Instance Normalization 36
5.17 Example images with water droplet artifacts 36
5.18 Water droplet artifacts shown in the feature maps 37
5.19 FID Graph: Minibatch Standard Deviation 38

53

54 List of Figures

5.20 Progressive growing output in early training 39
5.21 FID Graph: Progressive Growing . 40
5.22 Generated images at the start of the training without progressive growing 40
5.23 Demonstration of the ’phase artifacts’ . 41
5.24 Training Progress: Exponential Moving Average of the Generator Weights 43
5.25 FID Graph: Exponential Moving Average of the Generator Weights . . . 43

6.1 Example images from the car dataset. 45
6.2 Histogram of manufacturers and colors in the car dataset. 46
6.3 Example images at different resolutions 46
6.4 FID Graph: Car Dataset . 47
6.5 Example images generated by the StyleGAN with high quality. 48
6.6 Example images generated by the StyleGAN with bad quality. 48
6.7 The average car image . 49
6.8 Example images of number plates . 49
6.9 Standard deviation image for generated cars 50
6.10 Style mix in the car dataset . 50

Bibliography

[Ach+18] Dinesh Acharya et al. Towards High Resolution Video Generation with Pro-
gressive Growing of Sliced Wasserstein GANs. 2018. arXiv: 1810.02419

[cs.CV].

[BDS18] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Train-
ing for High Fidelity Natural Image Synthesis. 2018. arXiv: 1809.11096

[cs.LG].

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). USA: Wiley-
Interscience, 2006. isbn: 0471241954.

[CV95] Corinna Cortes and Vladimir Vapnik. Machine Learning. Kluwer Academic
Publishers, 1995.

[Fra+20] Joel Frank et al. Leveraging Frequency Analysis for Deep Fake Image Recog-
nition. 2020. arXiv: 2003.08685 [cs.CV].

[Gho+18] Arnab Ghosh et al. Multi-Agent Diverse Generative Adversarial Networks.
2018. arXiv: 1704.02906 [cs.CV].

[Goo+14] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

[Goo16] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. 2016.
arXiv: 1701.00160 [cs.LG].

[Gui+20] Jie Gui et al. A Review on Generative Adversarial Networks: Algorithms,
Theory, and Applications. 2020. arXiv: 2001.06937 [cs.LG].

[HB17] Xun Huang and Serge Belongie. Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization. 2017. arXiv: 1703.06868 [cs.CV].

[Heu+17] Martin Heusel et al. GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium. 2017. arXiv: 1706.08500 [cs.LG].

[Kar+17] Tero Karras et al. Progressive Growing of GANs for Improved Quality, Sta-
bility, and Variation. 2017. arXiv: 1710.10196 [cs.NE].

[Kar+19] Tero Karras et al. Analyzing and Improving the Image Quality of StyleGAN.
2019. arXiv: 1912.04958 [cs.CV].

55

https://arxiv.org/abs/1810.02419
https://arxiv.org/abs/1810.02419
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/2003.08685
https://arxiv.org/abs/1704.02906
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/2001.06937
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1912.04958

56 Bibliography

[Kha+20] Nour Eldeen M. Khalifa et al. Detection of Coronavirus (COVID-19) Asso-
ciated Pneumonia based on Generative Adversarial Networks and a Fine-
Tuned Deep Transfer Learning Model using Chest X-ray Dataset. 2020.
arXiv: 2004.01184 [eess.IV].

[KLA18a] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Ar-
chitecture for Generative Adversarial Networks. 2018. arXiv: 1812.04948
[cs.NE].

[KLA18b] Tero Karras, Samuli Laine, and Timo Aila. Flickr-Faces-HQ Dataset (FFHQ).
2018. url: https : / / github . com / NVlabs / ffhq - dataset (visited on
06/10/2020).

[KLA18c] Tero Karras, Samuli Laine, and Timo Aila. StyleGAN — Official Tensor-
Flow Implementation. 2018. url: https://github.com/NVlabs/stylegan
(visited on 06/10/2020).

[Led+16] Christian Ledig et al. Photo-Realistic Single Image Super-Resolution Using
a Generative Adversarial Network. 2016. arXiv: 1609.04802 [cs.CV].

[LKC16] William Lotter, Gabriel Kreiman, and David Cox. Deep Predictive Cod-
ing Networks for Video Prediction and Unsupervised Learning. 2016. arXiv:
1605.08104 [cs.LG].

[Mao+16] Xudong Mao et al. Least Squares Generative Adversarial Networks. 2016.
arXiv: 1611.04076 [cs.CV].

[Met+16] Luke Metz et al. Unrolled Generative Adversarial Networks. 2016. arXiv:
1611.02163 [cs.LG].

[Mey+19] Richard Meyes et al. Ablation Studies in Artificial Neural Networks. 2019.
arXiv: 1901.08644 [cs.NE].

[MGN18] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which Train-
ing Methods for GANs do actually Converge? 2018. arXiv: 1801.04406

[cs.LG].

[Sal+16] Tim Salimans et al. Improved Techniques for Training GANs. 2016. arXiv:
1606.03498 [cs.LG].

[Sho85] Ken Shoemake. “Animating rotation with quaternion curves”. In: SIG-
GRAPH Comput. Graph. 19.3 (July 1985), pp. 245–254. issn: 0097-8930.
doi: 10.1145/325165.325242. url: http://doi.acm.org/10.1145/
325165.325242.

[Sil18] Thalles Silva. An intuitive introduction to Generative Adversarial Networks
(GANs). 2018. url: https://www.freecodecamp.org/news/an-intuitive-
introduction-to-generative-adversarial-networks-gans-7a2264a81394/

(visited on 06/15/2020).

[SZ14] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

https://arxiv.org/abs/2004.01184
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/stylegan
https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1606.03498
https://doi.org/10.1145/325165.325242
http://doi.acm.org/10.1145/325165.325242
http://doi.acm.org/10.1145/325165.325242
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://arxiv.org/abs/1409.1556

57

[Sze+15] Christian Szegedy et al. Rethinking the Inception Architecture for Computer
Vision. 2015. arXiv: 1512.00567 [cs.CV].

[Wan+18] Ting-Chun Wang et al. High-Resolution Image Synthesis and Semantic Ma-
nipulation with Conditional GANs. 2018. arXiv: 1711.11585 [cs.CV].

[Whi16] Tom White. Sampling Generative Networks. 2016. arXiv: 1609.04468 [cs.NE].

[Yaz+18] Yasin Yazıcı et al. The Unusual Effectiveness of Averaging in GAN Training.
2018. arXiv: 1806.04498 [stat.ML].

[Yeh+16] Raymond A. Yeh et al. Semantic Image Inpainting with Deep Generative
Models. 2016. arXiv: 1607.07539 [cs.CV].

[Zhu+17] Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks. 2017. arXiv: 1703.10593 [cs.CV].

https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1711.11585
https://arxiv.org/abs/1609.04468
https://arxiv.org/abs/1806.04498
https://arxiv.org/abs/1607.07539
https://arxiv.org/abs/1703.10593

	Abstract
	Introduction
	Related Work
	Generative Adversarial Networks
	Challenges
	Non-Convergence
	Mode Collapse

	Metrics
	Fréchet Inception Distance

	Adaptive Instance Normalization

	StyleGAN Architecture
	Style Transfer
	Progressively Growing Structure

	Disentanglement Metrics
	Linear Separability
	Perceptual Path Length

	Ablation Study
	Baseline Model
	Loss Functions
	Training Dataset
	Training Results

	Style Mixing
	Stochastic Variation
	Truncation Trick in W
	Mapping Network
	Adaptive Instance Normalization
	Minibatch Standard Deviation
	Progressive Growing
	Exponential Moving Average of the Generator Weights
	Summary

	Results on the Car Dataset
	Car Dataset
	Training Results

	Conclusion & Outlook
	List of Figures
	Bibliography

