
Institut für Informatik

Universität Augsburg

���������	
���
Master Thesis

Conditional Rendering of 3D
Objects from 2D Images using

Deep Generative Neural
Networks

Florian Barthel

Gutachter: Prof. Dr. Rainer Lienhart
Zweitgutachter: Prof. Dr. Elisabeth André

Betreuer: Stephan Brehm
Datum: March 21, 2022

ii

verfasst am
Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Prof. Dr. Rainer Lienhart
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
www.Informatik.uni-augsburg.de

Abstract

In this thesis, we will present a method that allows to conditionally synthesize photore-
alistic 3D-like 360° views of cars using multi-labeled data. This is done by proposing a
multiple modifications to the StyleGAN introduced by Karras et al. in 2019 [Kar+19].
For this purpose, we will first focus on implementing and improving conditional synthe-
sis with the StyleGAN. To this end, we will propose several quality metrics specifically
for multi-labeled conditional synthesis and perform a series of experiments with the pro-
posed changes. As a result, we show that our modifications help the model to improve
the image quality, especially for label combinations that do not exist in the dataset.
This allows to configure the appearance of cars in photorealistic images with about 70
Million different label combinations. Given this capability, we then use a discrete camera
location label to synthesize continuous 360° rotations those cars. For this, we perform
a series of experiments and compare them along several rotation quality measurements.
We then obtain a model that enables to configure any car and rotate it by any given
angle. In a last experiment, we also show that the proposed methods scale well with
higher resolutions. This was often a drawback of GAN methods from literature that
produce images with 3D properties.

iii

Contents

Abstract iii

1 Introduction 1

2 Related Work 3
2.1 Generative Adversarial Networks . 3
2.2 StyleGAN . 5

2.2.1 Architecture . 6
2.2.2 Weight Modulation . 7
2.2.3 Path Length Regularization . 8

2.3 Conditional Generative Networks . 9
2.4 Fréchet Inception Distance . 11

3 Training Data 13
3.1 Image Adaptation . 13
3.2 Labels . 14
3.3 Dataset Biases . 16

4 Controlling the Image Synthesis of GANs 19
4.1 Latent Space Gradient Descent . 19
4.2 Style Mixing . 20
4.3 Principle Component Analysis of the Latent Space 21
4.4 Summary . 23

5 Conditional StyleGAN Experiments 25
5.1 Image Quality . 25
5.2 Conditional Accuracy . 26
5.3 Label Entanglement . 27
5.4 Image Quality for unseen Label Combinations 28
5.5 Implementing the Conditional StyleGAN 28
5.6 Baseline Model . 30
5.7 Label Sampling . 36

5.7.1 Soft Label Randomization . 36
5.7.2 Label Dropout . 39

5.8 Separate Label Mapping . 43
5.9 Label Information in the Discriminator 46

v

vi Contents

5.10 Combination Experiment . 52
5.11 Summary . 56

6 3D Image Synthesis with GANs 59
6.1 3D Output Space . 59
6.2 Internal 3D Representation . 60
6.3 Alternative Internal 3D Representations 60
6.4 Summary . 62

7 360° Rotation View Experiments 63
7.1 Rotation Goals and Metrics . 63

7.1.1 Rotation Image Quality . 63
7.1.2 Rotation Linearity . 64
7.1.3 Random Rotation Accuracy . 64
7.1.4 Continuous Rotation Distance . 65

7.2 Problems with the Baseline Model . 66
7.3 Sine / Cosine Rotation Label . 71
7.4 Training with Continuous Rotations . 78

7.4.1 Ignoring the Continuous Rotation Loss 79
7.4.2 Cooperative Continuous Rotation Loss 82

7.5 Perceptual Rotation Regularization . 86
7.6 Combining the Components . 89
7.7 Summary . 91

8 High Resolution Experiments 93
8.1 Combination Model Configuration . 93
8.2 Training Results . 95

9 Conclusion & Outlook 101

List of Figures 103

List of Tables 107

Bibliography 109

1 Introduction

The goal of synthesizing photorealistic images with machine learning algorithms has be-
come increasingly popular in recent years. It was mainly initiated with the introduction
of generative adversarial networks (GANs) by Goodfellow et al. in 2014 [Goo+14]. Since
then, significant advancements have been made, which now allow the synthesis of images
that are almost indistinguishable from real images for the first time. Due to this capa-
bility, GANs have found many applications in photo and video editing [ZKS21], product
design [Kat+19], 3D modeling [Cha+21b; Cha+21a; NG21], medicine [Wah+20], and
various other fields.
One of the most popular GAN architectures that achieves such photorealistic image
synthesis is the StyleGAN introduced by Karras, Laine, and Aila in 2018 [KLA18a].
This architecture improves the image synthesis considerably and is currently considered
as one of the best performing GAN frameworks for various image domains [Styb]. It
especially stands out for its ability to synthesize images at high resolutions, compared
to other GANs.
Although the synthesized images of GANs look impressively realistic, it is still a very
challenging task to precisely control specific features of the output images. To tackle
this challenge, various methods have been proposed in literature. One of them is the
Conditional GAN (cGAN), which was introduced by Mirza and Osindero [MO14] shortly
after Goodfellows introduction of GANs. In their paper, they propose a modified GAN
architecture that enables conditional image synthesis using labeled training data. For
the first time, this modification made it possible to achieve a significantly higher level
of control over the output images from GANs.
In this thesis, we will combine the realistic image synthesis of the StyleGAN with the
controllability of the cGAN. Furthermore, we will use a multi-label dataset of car im-
ages, created by the Chair for Machine Learning & Computer Vision of the University
of Augsburg, to manually configure the synthesis of photorealistic car images. To do
so, we will propose multiple modifications to the StyleGAN to improve the conditional
synthesis even further. In addition to that, we add a camera location annotation to the
car dataset, which allows generating car images from eight discrete viewpoints. With
this label, we then aim to improve the synthesized images in between those eight discrete
viewpoints, with the goal of creating a 360° view of a car. At the end of this thesis,
we combine all successful components in one model and test how well the proposed
modifications scale with an increased image resolution. The resulting model enables to
manually configure the attributes of high resolution photorealistic 360° views of cars.
This thesis is structure as follows:

1

2 Introduction

• First, in chapter 2, a brief overview of Generative Adversarial Networks in general,
the StyleGAN model and Conditional GANs is given. Furthermore, the the Fréchet
Inception Distance is presented, which measures image quality for GANs.

• Then, in chapter 3, we will present the dataset that will be used for the conditional
image synthesis.

• After that, in chapter 4, we will demonstrate several approaches from literature
to control the image synthesis of GANs using a StyleGAN model that was trained
with the dataset from chapter 3.

• In chapter 5, we will implement the conditional properties for the StyleGAN train-
ing and propose multiple modifications to improve the conditional image synthesis
even further.

• In chapter 6, we will give an overview of related work from literature that uses
GANs to synthesize images with 3D representations of objects.

• In chapter 7, we will create and improve the 360° synthesis of cars with the condi-
tional StyleGAN from chapter 5

• And at last in chapter 8, we will train a model at a higher image resolution in
which we combine all successful modifications from chapter 5 and chapter 7 in one
model.

2 Related Work

2.1 Generative Adversarial Networks

In the past years, Generative Adversarial Networks (GANs) have become one of the
most important machine learning methods in the field of image synthesis. Since the
introduction of GANs by Goodfellow et al. [Goo+14], they have been used in a wide
range of applications, making it, according to Yann LeCun, one of the most interesting
technologies in the past decade [Roc19].
The main idea of a GAN is to simultaneously train two separate deep neural networks
with adversarial behavior. One of the networks, the generator, is trained to synthesize
fake images from random latent vectors z (noise vectors), whereas the other network,
the discriminator, is trained to classify whether a given image is real or was created by
the generator. Since the generator never observes the real images during the training,
it exclusively relies on the feedback of the discriminator to improve the quality of the
generated images. At the beginning of the training, both networks perform very poorly,
meaning that the generator produces random images and the discriminator misclassifies
real and fake images. However, as both networks improve over the course of the training,
the generator starts to produce images that look more similar to the real images provided
to the discriminator. This is done, until, ideally, the generated images look as realistic
as the training images. An overview of a basic GAN training is visualized in Figure 2.1.

Figure 2.1: An overview of a basic GAN architecture.

3

4 Related Work

This adversarial behavior can be formalized in a non-cooperative min-max game, where
the discriminator aims to maximize the probability of correctly distinguishing the fake
images from the real images, while the generator aims to minimize the probability that
the discriminator detects the fake images. This min-max game can be expressed with
the following value function [Goo+14]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

Here, D(x) ∈ (0, 1] denotes the prediction of the discriminator, whether a given image
is real or fake. If D(x) outputs 0, it predicts that the image is fake and if it outputs
1, it predicts that the image is real. G(z) describes the output of the generator that
uses a random latent vector z to synthesize fake images. To minimize the output of the
value function, the generator maximizes D(G(z)), which increases if the discriminator
classifies a fake image as a real image. The discriminator, on the other hand, maximized
this value function by correctly identifying the real images, which increases the first
term Ex∼pdata(x)[logD(x)] and also by detecting the fake images, which increases the
second term Ez∼pz(z)[log(1 − D(G(z)))]. This min-max game is played until a Nash
equilibrium is reached. A Nash equlibrium describes a state of a non-cooperative game,
where both players can not improve their strategy, irrespectively of the actions of the
opponent. Ideally, this state is reached when the image distribution of the generator pg
is equal to the image distribution of the training data pdata [Goo+14, Theorem 1]. In
practice, however, we will only reach a local Nash equilibrium, since the gradient descent
algorithm is a local optimization method [Heu+17]. Two examples of a successful GAN
training are shown in Figure 2.2. Those models have been trained on the MNIST dataset
[Den12] (left) and on the Toronto Faces Dataset [Ban+21] (TFD).

Figure 2.2: Example images generated by a GAN trained on the MNIST dataset (left)
and the TFD dataset (right). The yellow highlighted images on the right show the
closest real image from the dataset to the images form the previous column. (image
source: [Goo+14])

Although in theory the distribution of the generated images pg should converge towards
the training data pdata [Goo+14, Proposition 2], in practice, GANs can be challenging
to train. The most common reason for this is the training instability between the gen-
erator and the discriminator. If for instance, at some point during the training, the
discriminator starts to outperform the generator, the generator will receive large loss
values. Those loss values in turn produce large gradients, which can cause the generator

2.2 StyleGAN 5

to diverge. If that happens, the output images from the generator look very poorly. For
that reason, it is essential to keep a balance between the performances of both models,
in order to successfully train a GAN.
Another common problem when training GANs is mode collapse. Mode collapse de-
scribes a state of a GAN, where the generator produces a very small amount of varia-
tion. This problem can arise if the generator successfully synthesizes one specific image
that the discriminator classifies as real. The generator will then receive a good feedback
for this specific image, which can enforce the generator to exclusively produce this spe-
cific image. An example for this effect can be observed in Figure 2.3 which shows the
generated images of two GAN trainings with and without mode collapse.

Figure 2.3: An example demonstration of mode collapse. The generated images on the
right show no variation. (image source: [Met+16])

2.2 StyleGAN

One of the most popular GAN architectures for deep image synthesis is the StyleGAN
introduced by the Nvidia research group Karras et al. in 2019 [Kar+19]. It stands
out for its state-of-the-art high resolution image synthesis with photorealistic quality.
Some example images, synthesized with the StyleGAN model, are shown in Figure 2.4,
demonstrating its (high) capabilities.

Figure 2.4: Example images synthesized by the StyleGAN model (image source: [Styc]),
trained with the FFHQ dataset [KLA18b].

In this section, we will give a brief overview of the StyleGAN architecture along with a
detailed explanation of two specific components. Those two components, weight mod-
ulation and path length regularization, are especially relevant for the experiments in
the following chapters. In this thesis, we will only focus on the StyleGAN2 model,
which is an improved version of the original StyleGAN [KLA18a] published in 2018. For
simplicity, we will refer to the StyleGAN2 model simply as StyleGAN.

6 Related Work

2.2.1 Architecture

Similar to conventional generative adversarial networks, the StyleGAN architecture also
consists of a generator and a discriminator. While the discriminator is a traditional
fully convolutional neural network that receives an input image and classifies whether
it is real or fake, the generator of the StyleGAN was completely reinvented. Instead
of feeding a random noise vector through a series of deconvolution layers to receive an
output image, the StyleGAN starts with a constant input with a resolution of 4 × 4
and 512 channels. This constant input is then processed by multiple convolution and
upsampling layers to produce an output image. Since this output image would be fixed,
given that it uses a fixed input, the StyleGAN applies random latent vectors to modify
the feature maps of the convolutions. This means that in the StyleGAN, the latent
vectors are not used as basis for the convolutions, but instead control the style of a fixed
image by manipulating the feature maps. Hence the name StyleGAN. The method for
this style transfer operation is called weight modulation and will be further explained in
the following section. An overview of the StyleGAN generator is shown in Figure 2.5.
There it is visualized how the latent vectors z are utilized to manipulate the feature
maps of the convolution with the constant input. After each convolution, the StyleGAN
also adds stochastic variation to the images by adding mapped noise. The output of each
layer is then up-sampled and forwarded to the next convolution layer. This is repeated
until the output resolution is reached, after which the channels are reduced via a 1× 1
convolution.

Figure 2.5: An overview of the StyleGAN generator architecture.

Before forwarding the latent vectors z to the weight modulation, they get also mapped
by a small network that consists of eight fully connected layers. This means that the
latent vectors z that are used to control the style of an output image are drawn from
an intermediate latent space. This latent space will be referred to as the disentangled
latent space W , as it is designed to spatially separate the image features of the latent
vectors

2.2 StyleGAN 7

2.2.2 Weight Modulation

The weight modulation component is the core operation of the StyleGAN. It is the
only operation that enables the network to produce variation in the images, given that
the convolution operations uses a constant input. Even though this input is also a
trainable tensor, it is still necessary to input a random latent vector, in order for the
GAN framework to work. The weight modulation component utilizes the latent vectors
w ∈ W , which have been mapped from an input vector z to modify the feature maps
before each convolution operation. This is done by multiplying each input feature map
with a single scaling factor. This way, each input latent vector has an influence, how
the input feature maps for each convolution operation are weighted to create the output
image. In the StyleGAN, this method is not implemented by directly multiplying the
feature maps, but instead multiplying each convolution kernel along the axis for the
input feature maps. This has the same result, as the multiplications of the convolution
are associative. By doing so, the weight modulation can be expressed by the following
calculation:

w′
ijk = si · wijk (2.2)

Here, w denotes the original filter weights and w′ the modulated. i is the axis of the
input feature maps, in which each scaling factor si is multiplied, j is the dimension of
the output feature maps and k is the combined width and height dimension of a kernel.
For the StyleGAN model, k is equal to 3× 3 for every layer.
Since, such a modulation operation can significantly change the statistics of the output
feature maps, a normalization is applied. Instead of using an instance normalization
method that scales the output feature maps based on its statistics, a so-called ’demodu-
lation’ operation is used. This ’demodulation’ operation scales the output feature maps
only based on the statistics of the modulated weights w′. This is done by dividing the
output feature maps with the L2 norm of the modulated weights w′. This way, both
the input and output feature maps have the same standard deviation. Like the weight
modulation operation, the demodulation operation is also realized by modifying the fil-
ter weights instead of the actual feature maps. By doing so, the resulting convolution
weight can be expressed as follows:

w′′
ijk =

w′
ijk√∑

i,k w
′2
ijk + ϵ

(2.3)

Here, the L2 norm is performed for all modulated filters w′
ijk along the output dimension

j, so that, effectively, each output feature map is divided by the L2 norm of the filter
coefficients. To avoid numerical issues, a small constant ϵ is added.

8 Related Work

A visualization of the modulation / demodulation method is shown in Figure 2.6. It
illustrates how the scales si effectively multiply each input feature map, while the de-
modulation multiplies each output feature map. For simplicity, we only use one filter in
this example.

Figure 2.6: An illustration of the weight modulation method, where the convolution
kernel is first modulated along the input dimension i and then demodulated along the
output dimension j.

2.2.3 Path Length Regularization

The path length regularization is a component specifically designed to smoothen the
interpolation paths in the disentangled latent spaceW . The main idea of this component
is to align the distances in the latent space with the magnitude of change in the output
images. This means that a small step in the latent space should also cause a small change
in the output image and vice versa. This is a desired characteristic, since it helps to
produce smooth animations when generating images along an interpolated path in the
latent space if ’a fixed-size step inW results in a non-zero, fixed-magnitude change in the
image’ [Kar+19]. In addition to that, it also helps to locate specific images in the latent
space, which will be done in chapter 5. To optimize this during the training, Karras et al.
[Kar+19] propose the path length regularization method. This method first generates
an image G(w) in the generator, based on a latent vector w from the disentangled latent
space W . The output image is then slightly modified by multiplying a random noise
image Inoise. After that, the gradient of the resulting image to its corresponding latent
vector w is calculated via backpropagation (∇w(G(w)Inoise)). If this gradient has a large
magnitude, it indicates that the output image changes a lot when modifying the latent
vector w and vice versa. Given that the noise image has a fixed magnitude, it is desired
that the magnitude of the gradient is also fixed. In order to penalize the network, if
the magnitude of the gradient changes a lot, it is compared to a moving average of all
previous gradient magnitudes. This can be expressed with the following term [Kar+19]:

2.3 Conditional Generative Networks 9

RegG = Ew,Inoise∼N (0,1) (||∇w(G(w)Inoise)||2 − A)2 (2.4)

where A is the exponential moving average of the magnitudes from all previous gradients
during the training and Inoise the noise image that is multiplied to the output image.

2.3 Conditional Generative Networks

Later the same year in which Ian J. Goodfellow introduced the Generative Adversarial
Network, Mirza and Osindero published a modified architecture of the GAN that made
it possible for the first time to conditionally synthesize images [MO14]. There, they
proposed an extension to the min-max value function (Equation 2.1) that incorporates
labels. This extension can be expressed as follows:

min
G

max
D

V (D,G) = Ex,y∼pdata(x,y)[logD(x|y)] + Ez∼pz(z),y∼py(y)[log(1−D(G(z, y)|y))]
(2.5)

Here, the generator receives an additional label input y to produce an image with the
content of the current class. The discriminator, on the other hand, now predicts whether
an image label pair (x, y) or (G(z, y), y) is real or fake, given that it is from the class
y. This means that both networks now require an additional label input, as shown in
Figure 2.7.

Figure 2.7: Overview of a basic Conditional GAN architecture.

The simplest way to incorporate this label is to concatenate it to the other inputs.
Therefore, the inputs are commonly mapped to compatible dimensions using a dense
layer [MO14].

10 Related Work

This architecture enables the image synthesis with specific class inputs. An example for
this is shown in Figure 2.8. There, each row is generated with a different input label.

Figure 2.8: Example images generated by a conditional GAN trained on the MNIST
dataset (image source: [MO14])

Although this method has shown to be successful, we will apply an alternative conditional
architecture introduced by Mescheder, Geiger, and Nowozin [MGN18] for the conditional
training with the StyleGAN. In this approach, the label is not directly forwarded to the
discriminator. Instead, the discriminator is build to have one output neuron for each
class. Then, if the discriminator has to predict whether the input image is real or
fake, only the output neuron at the index of the current class is selected. This can be
implemented by simply masking the output neurons with the label, given that the label
only consist of zeros and ones. This architecture is visualized in Figure 2.9.

Figure 2.9: Architecture of an alternative conditional GAN by Mescheder, Geiger, and
Nowozin [MGN18].

2.4 Fréchet Inception Distance 11

2.4 Fréchet Inception Distance

After successfully training a GAN, we obtain a generator that produces an infinite
amount of images. While some of those images will have high quality and look very
realistic, others might look very poor. In order to measure this quality quantitatively, it
requires a metric that correlates well with human judgment. Therefore, we will use the
Fréchet Inception Distance (FID) for this thesis. This metric was introduced by Heusel
et al. in 2017 [Heu+17] and is next to the Inception Score [Sal+16] one of the most
popular quality measurements for GANs. It uses a pre-trained classifier network (the
Inception-V3 [Sze+15]) to calculate a distance between the generated images and real
images from the training dataset. To do so, it calculates the feature vectors of 50000
fake images and 50000 real images and compares them with the following expression:

FID = ∥µ1 − µ2∥22 + Tr
(
C1 + C2 − 2

√
C1C2

)
(2.6)

Here, µ1 and µ2 are the means, and C1 and C2 are the covariance matrices of the feature
vectors from the real and fake images. Tr denotes the linear trace operator that calculates
the sum of the diagonal entries of a matrix. A low FID output corresponds to two very
similar image distributions, which in turn implies that the quality of the generated
images is high. This can be demonstrated if we input the same image distributions two
times. Then the FID outputs zero, as demonstrated in Equation 2.7.

FID = ∥µ1 − µ1∥22 + Tr
(
C1 + C1 − 2

√
C1C1

)
= 0 + Tr

(
2C1 − 2

√
C2

1

)
= 0 + Tr (2C1 − 2C1)

= 0

(2.7)

To underline the effectiveness of this metric, Figure 2.10 shows some examples, where
the FID correlates with increasing image disturbance.

Figure 2.10: A demonstration how the FID correlates with increasing image distur-
bance (image source: [Heu+17])

3 Training Data

The dataset that we use for all experiments is the car dataset created by the Chair for
Multimedia Computing and Computer Vision of the University of Augsburg. To give
a brief overview of the dataset, we first describe how the images need to be adapted
in order to use them as training data for the StyleGAN model. Afterwards, we give a
summary of the labels that we will use for the conditional image synthesis. And at last,
we point out some problems and biases of the dataset.

3.1 Image Adaptation

The car dataset consists of about 74000 car images with resolutions ranging from 75×75
to 8688 × 5792 pixels, and aspect ratios ranging from 1.0 to 3.0 (width

height
). Due to the

architecture of the StyleGAN model, however, both have to be adapted. This is because
the generator starts at an internal feature map resolution of 4×4 and then uses multiple
up-sampling operations to output an image at a 2n×2n resolution. Therefore, the images
of the car dataset need to be adapted to also have a square ratio and a unified resolution.
To do this without losing too much of the image content, we first crop the images to
the next closest discrete image ratio [1.2, 1.4, 1.6, 1.8, 2.0] (width

height
) and then pad them

with zeros at the top and at the bottom to receive a squared image ratio. At last, we
also resize the images to a 2n×2n resolution. Two examples for this editing pipeline are
visualized in Figure 3.1.

Figure 3.1: Two examples images that are processed by the image editing pipeline,
that was used to prepare the images from the car dataset for the StyleGAN training.
The images are first cropped, then padded, and at last resized.

13

14 Training Data

This demonstrates how two images with very different aspect ratios can be adapted for
the StyleGAN training without losing too much information about the car. Although it
might be reasonable to crop the image towards the location of the car, by using a pre-
trained detector network, it showed to be sufficient to simply crop the image towards
the center, since almost all of the cars are located in the center.
The quantizised image ratios that we choose are based off the distribution of the aspect
ratios from the original images. They showed to cover the majority of the ratios, without
cropping too much of the image content. The training can also be done without cropping
the images at all and instead only padding and resizing them. This, however, would
create some images with a very large zero-padded area. In addition to that, using a
discrete ratio enables us to create a ratio label, which can be used in the training of the
conditional StyleGAN, to control the image ratio of the output images.

3.2 Labels

To train a conditional GAN, as described in section 2.3, we need to provide the network
with one-hot encoded labels. For this thesis, we chose the following labels: car color,
car model, car manufacturer, car body style, car rotation, image background, and image
aspect ratio. While the model, manufacturer, color and aspect ratio labels have already
been provided by the car dataset, the rotation, background, and body still had to be
added. To do so, we labeled a total of 10700 images (about 600 per class) by hand,
using the PicArrange [Jun+21] tool. This tool is designed for quickly finding visually
similar images, which facilitated the annotation process considerably. We then used
those labeled images to train a pre-trained resnet50 model [He+15] for a duration of
80000 training images. After that, we selected the checkpoint with the highest accuracy
on a separate test set (20% of the data) and utilized it to classify the rest of the images
from the dataset. In order to obtain a high classification accuracy, we only selected the
classifications that had a confidence higher than 80% and filtered those images again by
hand. To give a brief overview of all seven labels, we summarize them in Table 3.1. For
the three additional labels (rotation, background and body style), we also give further
details and examples in the following subsections.

Label Number of Classes Dataset Coverage Annotation Method
Model 67 95% image search engine keyword
Manufacturer 18 95% image search engine keyword
Color 12 41% hand annotated
Body Style 10 53% classifier + filter by hand
Rotation 8 96% classifier + filter by hand
Background 6 59% classifier + filter by hand
Ratio 5 100% image width / height

Table 3.1: Overview of all seven labels of the car dataset.

3.2 Labels 15

Car Rotation

The rotation label is the most important annotation for this thesis, since we will use
it in chapter 7 to synthesize a 3D view of a car. It is split into eight discrete classes,
distributed uniformly along a full 360° rotation. This means that each of the eight classes
describes an angle ϕ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} as shown in Figure 3.2.
While the k · 90° rotations have been annotated very accurately, the others can slightly
vary in their rotation angle. For example, the 45° rotation class mainly describes that
the car rotation is in between 10° > ϕ > 80°. This is done for the following two reasons.
The first reason is that the labels should never overlap each other. This could be the
case if all cars with a rotation angle smaller than 22.5° get quantisized to 0°, while all
cars with a greater rotation angle get quantisized to 45°. Any car with an angle of about
22° could then be classified with either class, given that the actual rotation angle is
difficult to measure in 2D images. The second reason for this decision is that the k · 90°
angles act as pivot points at which the appearance of the car changes the most during a
rotation. For generating a realistic rotation with a conditional StyleGAN, it proved to
be essential that those angles are as precise as possible.

Figure 3.2: Example images for the rotation label. Each class describes a k · 45° angle
around the car. The blue and white sections in the rotation circle denote the angle
intervals that quantisize the eight discrete labels.

Image Background

The background label consists of about 44000 training examples, which are separated
into six classes. Those six classes are: showroom, city, countryside, off-road, white and
black. The city label contains all images with buildings in the background, the country-
side label all images with nature in the background, and the off-road label contains all
images where the car is not driving on an asphalt road.
The histogram of the background label shows that images taken in a showroom or in the
city are much more represented in the dataset compared to images with a black or white
background. Although such label unbalance can harm the generalization quality of the

16 Training Data

model, we expect it to work well, given that images with black and white backgrounds
are much simpler to generate than images with complex structures, such as buildings or
trees.

Figure 3.3: The frequency distribution of the image background along with example
images.

Car Body

The car body label consists of 39000 training examples that are split into 10 classes. An
example for each class is shown in Figure 3.4 along with their frequency in the dataset.
Since the coupé and the off-road class can sometimes overlap with other body styles for
some cars, we decided that only those images get classified as coupé or off-road that do
not fit in any other more specific class. For example, we classify cars that are convertibles
and a coupés at the same time only as a convertibles.

Figure 3.4: The frequency distribution of the car body labels along with example
images.

3.3 Dataset Biases

A common problem when dealing with datasets are dataset biases. Dataset biases are
characteristics of datasets that can reduce the generalization quality when training a
machine learning algorithm [Tom+15]. The two biggest dataset biases that can be
found in the car dataset are selection bias and capture bias. Those biases have been

3.3 Dataset Biases 17

defined by Torralba and Efros [TE11] and describe characteristics based on the method
the images were collected and a bias based on how the photos were taken, respectively.
The selection bias of the car dataset can, for example, be found in the distribution of the
car manufacturers, shown in Figure 3.5. It highlights that German car manufacturers
are much more represented than others. While 16% of the cars are BMWs, only 1% are
Hyundais. Given this bias, we expect that the generated images show a higher quality
for BMWs than Hyundais, as they get sampled much more frequently during training.
The capture bias on the other hand can be found in the distribution of the car rotation
(Figure 3.5). It shows that most images were taken from the ’front left’ or ’front right’,
whereas only very few were taken from the rear center. This is likely because ’front
left’ and ’front right’ are very common angles to take a photo of a car. Since the
rotation label is the most important label for this thesis and some prior experiments
with the dataset showed that an unbalance in the rotation can cause major problems
in generalization quality, we oversample this label during the training. This means that
we sample training examples with less frequent rotation angles more frequently. This
is demonstrated in the red graph of Figure 3.5, where each class now has a minimum
of 10000 training images. We limit this frequency by 10000 to avoid any mode collapse
problems during the training, which is more likely if we duplicate some of the images
too often. In order to still balance the ’front left’ and ’front right’ classes with the rest
of the rotations, we randomly remove some of them during the training. This way, we
can keep all of the labels, while also none of the classes get oversampled too much.

Figure 3.5: The frequency distribution of the car manufacturer classes (left) and ro-
tation classes in the car dataset (right). It shows that some classes are much more
represented than others. To encounter this, we oversampled the rotation label during
the training, which leads to the distribution highlighted in red.

One further bias that can be found in the labels of the car dataset is the correlation
between some of the labels. An intuitive example for this is the color distribution of
Ferraris. It showed that about 60% have the color red, whereas only about 1% are
green, orange or purple. Given this unbalance, we expect that generated images with
red Ferraris show considerably better quality than Ferraris in other colors. This is
because those combinations are generated much more often during the training. Similar
connections can also be found between other labels. For an example, a car with an
off-road body style is more frequently found in an off-road background.

4 Controlling the Image Synthesis of
GANs

While GANs have shown a lot of success in generating photorealistic images in recent
years, it still is very difficult to control specific attributes in the synthesized images.
One major reason for this is the complexity of the generator, which is trained to create
realistic images only from high dimensional random noise inputs (or latent vectors).
Since this random latent vector is the only controllable input parameter for traditional
GANs, it is only possible to customize a generated image with specific attributes (e.g.
car color or background), by finding the corresponding latent vector. This, however,
can be very exhaustive and time consuming, considering the high-dimensional, infinitely
large, latent space. To tackle this problem, this chapter introduces three methods from
literature to control the image synthesis with GANs. In order to apply the following
three methods, we train the standard StyleGAN as described in section 2.2 with the
images from the car dataset. This training was performed at an image resolution of
512× 512 pixels for a duration of 8 million training images and achieved a FID of 2.85.

4.1 Latent Space Gradient Descent

The first method for controlling the image synthesis of the generator applies the gradient
descent algorithm onto the latent space. The goal of this method is to find the best latent
vector that re-synthesizes a given target image. The method was introduced by Karras
et al. in the StyleGAN2 paper [Kar+19] and is originally motivated to detect whether a
given image is real or was generated by the StyleGAN model. This is an important task
in the field of image synthesis, since generated photorealistic images can cause security
issues when they are used ’to counterfeit some personal information in social networks’
[Li+18]. To counteract this problem, this method is designed to check if a latent vector
can be found that exactly re-synthesizes the target image. In such a case, it is very
likely that the image is fake. In addition to checking if an image was generated by the
StyleGAN model, it can also be utilized to control the output of the generator. To do
so, simply a target image is provided to the method, which the model then aims to
re-synthesize.
The implementation of this method can be described as follows: First, an image with
a random initial latent vector is generated. Then, this image is compared to the target
image using a perceptual distance which can be used as a loss to calculate a gradient to

19

20 Controlling the Image Synthesis of GANs

the input latent vector. The latent vector is then updated towards the opposite of the
gradient, like in a traditional gradient descent algorithm. This process is repeated for a
large number of iterations until the perceptual distance of the generate image and the
target image is very low. At this point, both images look very similarly to each other.
A demonstration of this method is shown in Figure Figure 4.1, where an image from
the training dataset is re-synthesized in 1000 update steps. This takes about 13 minutes
using an Nvidia GTX 1070.

Figure 4.1: A demonstration of a re-synthesized image, using gradient descent in the
latent space.

In summary, this method works very well for finding specific images in the latent space.
On the downside, however, this method is very computationally expensive. In addition
to that, it also does not enable the synthesis of new images, since it always requires a
target image. An extension to this method to create new images could be to find the
latent vectors of two target images and then generate a third image with the mean of
both latent vectors. The resulting output image then might show a combination of both
target images. This extension, however, would require even more computations than
before.

4.2 Style Mixing

The next conditional synthesis method is style mixing introduced by Karras, Laine,
and Aila [KLA18a] along with the first version of the StyleGAN in 2018. Back then, the
style mixing method was originally designed as a regularization technique to increase the
variation of the generated images during the training. However, it can also be utilized
to control the output of the generator. The main idea of style mixing is to combine
two latent vectors of two generated images, so that a third image can be generated,
that has some attributes from the first image and some from the second. To do this,
two latent vectors z1 and z2 are first mapped to the disentangled latent space W and
then forwarded to the generator at different layers, as visualized in Figure 4.2 (right).
The generator then uses those mapped latent vectors to modulate the weights of the

4.3 Principle Component Analysis of the Latent Space 21

convolutions and therefore manipulate the attributes of the output image. Depending
on the layer at which the latent vectors manipulate the weights of the feature map,
different attributes are changed in the output image. An example for this is shown in
Figure 4.2 (left), where in each column the latent vector w1 is replaced with w2, at the
corresponding layer. It demonstrates that changing the latent vector of the earlier layers
of the generator corresponds to coarse changes in the image, such as rotation, while the
latter layers mainly change fine details or colors.

Figure 4.2: A demonstration of the style mixing method (left), where each column
denotes the layer at which the latent vector w1 is replaced by w2. On the right also an
illustration of the generator performing the style mixing is shown.

Now, in order to take advantage of this method and utilize it for conditional image
synthesis, multiple latent vectors can be combined at different layers in the generator to
obtain the desired output image.
Altogether, this method is very simple to use and does not require a lot of computing
time. However, before customizing images by combining the features of different images,
the corresponding input latent vectors first have to be found. As previously stated, this
can be very difficult. In addition to that, this method does not allow to manipulate any
attributes other than those that are provided in the layers of the StyleGAN. Moreover, it
is not possible to alter only a single attribute of the image. This, for example, is shown
in Figure 4.2 (left), where in addition to the rotation in the second column, also some
parts of the background change.

4.3 Principle Component Analysis of the Latent Space

The third method for controlling the image synthesis was proposed by Härkönen et al.
in 2020 [Hä+20]. The method utilizes the Principle Component Analysis (PCA) to alter
specific attributes in the generated images. To do so, the PCA is calculated with a
large number of latent vectors in the disentangled latent space W , to determine the
main components of the latent space. With those components, an image can then be
manipulated by creating a latent vector from a linear combination of weighted PCA
components. It shows that each component mainly corresponds to one specific image
attribute. The first few components, with the largest eigenvalues, mainly correspond to

22 Controlling the Image Synthesis of GANs

coarse features, such as the rotation of the car, while higher components with smaller
eigenvalues, correspond to smaller changes in the output image, such as the color. An
example for this is shown in Figure 4.3 and Figure 4.4. Figure 4.3 shows an example,
where the second component is multiplied, which caused the generated car to rotate by
about 90°. And Figure 4.4 shows an example where the 20th component is multiplied,
which changes the color of the car.

Figure 4.3: An example output sequence when adding the 2nd PCA component, mul-
tiplied by values from -20 to 20, to the latent vector. It shows that the car is rotating
at 90°.

Figure 4.4: An example output sequence when adding the 20th PCA component, mul-
tiplied by values from -20 to 20, to the latent vector. Here, it changes the color of the
car.

In order to customize an output image with this method, the components that are
corresponding to specific attributes can simply be altered. This method is easy to use
and computationally cheap. It, however, does not allow to modify any attributes other
than those that are encoded in the main components. In addition to that, we also
observe that multiple attributes are changed at the same time when multiplying one
component. This can be seen in in both examples, where in addition to the color and
rotation, the background and the car body also change. This makes it, like the previous
method, very difficult to fully customize the output of the generator.

4.4 Summary 23

4.4 Summary

While the three presented methods show some capability to modify the content of the
generated images, they were all based on finding a specific latent vector in the latent
space, either by hand or with the gradient descent algorithm. This, however, as stated
before, can be very difficult or computationally expensive, considering the large 512
dimensional continuous latent space. In order to avoid such an extensive search, we
apply the characteristics of a Conditional GAN to the StyleGAN model. By doing so,
the synthesis of images with specific attributes of the labels that are provided by the car
dataset is enabled. In the next chapter, we will implement the conditional behavior in
the StyleGAN architecture and perform several experiments with the goal of improving
the performance of conditional image synthesis.

5 Conditional StyleGAN Experiments

In this chapter, we will implement and improve the conditional image synthesis for the
StyleGAN model. To do so, we will first implement a baseline model that combines the
standard StyleGAN with a Conditional GAN. After that, we propose multiple modi-
fications to the baseline model and test them in a series of experiments. At the end
of the chapter, we will combine all successful modifications into one model to test how
well the proposed modifications work together. In order to compare the performance
between each experiment and the baseline model, we also introduce four characteristics
for good conditional image synthesis and propose four metrics to measure each aspect
quantitatively. Those four characteristics are:

1. High image quality

2. High conditional accuracy

3. Low label entanglement

4. High image quality for unseen label combinations

In the following four sections, we will give a more detailed explanation for each charac-
teristic and propose a metric for each.

5.1 Image Quality

Although a generally high image quality is not a characteristic that is specifically desir-
able when training a Conditional GAN, it is still an essential aspect for image synthesis.
To measure it quantitatively, we apply the FID metric from section 2.4 to compare the
image qualities of the following experiments. As described in section 2.4, the FID com-
pares the image distribution of the generated images to the image distribution of the
training dataset, using a pre-trained perceptual network. A low value states that both
distributions are similar to each other, which corresponds to high image quality. Given
that we now generate images with an additional label input, we simply draw the labels
for fake images of the FID calculation from the dataset. This way, the images are as
close to the real data as possible. Apart from that we do not change the FID calculation.

25

26 Conditional StyleGAN Experiments

5.2 Conditional Accuracy

When training a Conditional GAN, high conditional accuracy is obviously particularly
important. It reflects how well the labels have been learned by the model. To mea-
sure this aspect, we utilize multiple pre-trained classification networks to calculate an
accuracy between the input labels of the generator and the classifier predictions for the
output images. To do this, we train one classifier for each of the seven labels from the
car dataset. For each classifier, we use a pre-trained VGG16 backbone [SZ14] with an
additional classification head. At the end, we activate the output with a softmax func-
tion and calculate a cross entropy loss.
After training each classifier, they score accuracies from 81% to 98% on separate test
sets, as shown in Figure 5.1 (left). We decided to train each classifier for a different
duration, since it showed that some labels are considerably more difficult to learn. For
instance, we performed the longest training with the car model classifier, since this label
contains 67 different classes, of which some only differ in small details.

Figure 5.1: The classifier accuracies over the training (left). And a confusion matrix
of the color classifier, which performs the worst of all classifiers. It shows that the color
classifier mainly miss classifies the classes silver, gray, and brown.

The classifier with the overall worst performance is the color classifier. This classifier
only scored an accuracy of 81%, whereas the others scored about 90%. To understand
this, we generate a confusion matrix using the test set (Figure 5.1 right). This confusion
matrix highlights that the color classifier especially struggles to differentiate the classes:
silver, grey and black. Given that those colors can be very similar to each other it might
explain why the classifier performs this poorly.
The only classifier that we trained with a different network architecture compared to
the other classifiers is the image ratio classifier. This is because a fully convolutional
network turned out to perform very poorly at classifying global image features such as
the image ratio. Instead, we then simply used a smaller network that only consists of
one convolution layer with a 1 x 1 kernel and one dense output layer. This network then

5.3 Label Entanglement 27

showed to classify the images with a 98% accuracy after only five thousand training
images.
With the help of all seven classifiers, we can now calculate the average conditional
accuracy over all labels as follows:

Acond =
1

|labels|

labels∑
l

1

N

N∑
i=1

equal(Cl(G(z, yi)), yi) (5.1)

Here, Cl denotes the classifier of the label l, G the generator and yi the input label. The
equal function is defined to output a 1 if both inputs are equal, and a 0 otherwise. For
this metric, we set N to 5000. This means that calculate the average accuracy for a
total of 35000 images.

5.3 Label Entanglement

The next desired characteristic for conditional image synthesis is a low label entan-
glement. This characteristic describes how many other image attributes change when
modifying a label. If we change the color of a car from red to blue, for instance, we
do not expect any other attributes (i.e. background or rotation) to change as well. In
practice, however, we observe that this is often the case and that some labels have a
strong entanglement (or connection). To measure this entanglement quantitatively, we
utilize the classifiers from the previous metric to predict the class of each label before and
after changing a class of a different label. I.e., we estimate the probability how often the
prediction of a label changes when manipulating another label. To do so, we calculate
the average number of changes for each classifier. In order to output a single value for
this metric, we average the number of changes from all classifiers. This means that a
low output indicates a low label entanglement and vice versa. This can be expressed as
follows:

E =
1

|labels|

labels∑
l

1

N

N∑
i=1

equal(Cl(G(zi, yi)), Cl(G(zi, y
′
i))) (5.2)

Here, y and y′ are the labels before and after one class of a label (that is different to l)
has been modified and Cl denote the classifier of label l. The equal function is defined
as in the previous metric. For this metric, we choose N to be 10000.

28 Conditional StyleGAN Experiments

5.4 Image Quality for unseen Label Combinations

The quality of images, synthesized with unseen label combinations, is especially interest-
ing when training a Conditional GAN with multiple labels. This is because GANs allow
us to extrapolate the training data in order to create photorealistic images from objects
that do not exist in the real world. Now, given the ability to control the output images
with input labels, we can observe how the generator handles new label combinations
that do not exist in the real world. For example, when generating a green Ferrari with
a body of a pickup-truck, which does not exist in the training data or in the real world,
we still want to receive a photorealistic output images in which some characteristics of
a Ferrari get combined with the body of a pickup-truck. In order to measure this aspect
quantitatively, we again use the FID metric from section 2.4. However, instead of draw-
ing the labels from the dataset, like it is done in section 5.1, we now create random label
combinations. This way, we measure the image quality for images that were generated
from new and unseen label combinations.
For this metric, we have to consider that the output will likely be a higher compared to
the FID of section 5.1. This is because, we assume that the real labels from the dataset
should help to produce an image distribution that is closer to the real images.

5.5 Implementing the Conditional StyleGAN

In order to train the StyleGAN as a Conditional GAN, we have to perform two modifi-
cations. First, we have to integrate the labels into the latent space so that the generator
can synthesize the images based on them. And second, we have to adapt the output of
the discriminator, so that the discriminator does not solely decide whether the image is
real or fake but instead evaluates how well each attribute of the given label has been ful-
filled. In the following sections, we describe two methods, how this can be implemented
in the StyleGAN. Before that, however, we first give a brief overview of the input label
vector.

Input Label

Given that the images in the car dataset have multiple labels, we utilize a vector that
concatenates all one-hot vectors from all seven labels for the conditional training. This
127-dimensional vector is visualized in Figure 5.2.

Figure 5.2: The label vector for the conditional StyleGAN training. The vector con-
catenates all one-hot labels from the car dataset and has a total length of 127.

5.5 Implementing the Conditional StyleGAN 29

Since not every image in the dataset is labeled with all seven labels, we simply fill a label
segment with zeros, if the corresponding label does not exist. In addition to that, we
decided that the first entry of every label vector will be always filled with a 1. This entry
will be used as a ’real / fake’ label, similar to a traditional GAN, trained without labels.
It is added to receive an output from the discriminator independently of the labels, given
that not all image features are covered by the labels. This gives the discriminator the
ability to decide whether an image was real or fake, without having to specify which of
the seven given labels were realistic or not.

Integrating the Labels into the Latent Space

The first StyleGAN modification deals with the integration of the label information into
the latent space. The method that we use was first introduced by Cedric Oeldorf and
Gerasimos Spanakis [OS19] in 2019.
In the traditional StyleGAN, we only provide the generator with a random latent vector
z. In order for us to train the StyleGAN as a conditional network, however, it is required
to also add a label. To do so, we multiply the label vector, as described in the previous
subsection, by a trainable tensor T ∈ R127×512. This tensor T has the shape 127 and
512 which are the dimensions of the label and the dimension of the latent space vector
z, respectively. After that, we receive a tensor with an output shape of N × 512, with
N being the batch size. The resulting tensor is then concatenated with the latent vector
z and forwarded to the mapping network of the generator. After that, the resulting
mapped latent vector is used to modify the filter weights of the convolutions in the
generator. This method can be formulated as follows:

w = f([y × T]⌢z) (5.3)

where f is the mapping network, z the latent vector and y the label [OS19]. The symbol
⌢ denotes the concatenation operation.

Adapting the Discriminator

The second method for adapting the output of the discriminator was first introduced by
Lars Mescheder [MNG18] in 2018.
When training the StyleGAN without labels, the discriminator only has to decide,
whether the shown image is real or fake. However, when training with labels, this
decision does not suffice. Instead, the discriminator now has to differentiate how well
the input image fulfills the attributes of the given labels. In order to implement this, we
apply an additional dense layer with linear activation at the output of the discriminator,
which is equipped with 127 output neurons. Since this is the number of classes in the
concatenated label vector, we receive one output neuron for every class. After that,

30 Conditional StyleGAN Experiments

we use the label vector that only consists of zeros and ones as a mask for the output
neurons, since we are only interested in the output of the neurons that correspond to
the current label. At the end, we calculate the sum and forward the result to the loss
function. This can be expressed as follows:

D =
127∑
i

D′
i · yi (5.4)

Here, D′ is the output layer of the discriminator, which has one neuron for each for each
class in the label vector y [OS19]. A high output of D corresponds to high activations
at the correct label positions. Like in a traditional GAN, the discriminator then aims to
maximize the output of D for real images and minimizes it for fake images, whereas the
generator aims to maximize this output for fake images. Before forwarding the output
of D to the loss function, we also apply a sigmoid function. This way, the output values
are between 0 and 1 before calculating the logarithm in the loss functions.

5.6 Baseline Model

In our first experiment, we train the StyleGAN model as a conditional adversarial gener-
ative network, using the labels from the car dataset described in chapter 3. This exper-
iment functions as a baseline model for the following experiments that propose several
modifications based on this model. Before presenting the training results, however, we
give a more detailed description of the training configuration and the loss function of
the StyleGAN.

Loss Functions

The loss functions for the generator and discriminator are based on the min-max value
function from section 2.3. This value function suggests that the generator minimizes the
term log(1−D(G(z, y), y)), while the discriminator maximizes both log(1−D(G(z, y), y))
and logD(x). The most straightforward way to express these goals with two loss func-
tions would be as follows:

LG =
1

N

N∑
i=1

log (1−D(G(zi, yi))) (5.5)

LD = − 1

N

N∑
i=1

[log (D(xi, yi)) + log (1−D(G(zi, yi), yi))] (5.6)

5.6 Baseline Model 31

Here, simply the value function is inverted for the discriminator loss. This way the
term can be minimized instead of maximized. N denotes the batch size. While this loss
is also used for the StyleGAN discriminator, a slightly modified loss is chosen for the
generator. Instead of minimizing the term log (1−D(G(z, y))), a non-saturating loss is
utilized [Kar+19]:

LG = − 1

N

N∑
i=1

log (D(G(zi, yi))) (5.7)

This loss has the advantage that the absolute value of the loss does not converge to 0
as the generator decreases in performance. It is avoided, given that − log (D(G(z, y)))
diverges to ∞ as the fake images achieve low activations in the discriminator:

lim
D(G(z,y))→0

− log (D(G(z, y))) = ∞ (5.8)

As a result, the chance for diminishing gradients is reduced.

Training Details

For all following experiments, we perform a training with a duration of five million train-
ing images, shown to the discriminator. This takes about 7 to 9 days, using two Nvidia
GTX 1080ti GPUs, depending on the training configuration. The whole model has about
59 million trainable parameters that are evenly balanced between the generator and dis-
criminator. Although the car dataset provides images at a high resolution, we set the
output resolution to 256× 256 pixels for all the following experiments. This resolution
is selected since it offers a good trade-off between training time and image detail. Later,
in chapter 8, we also train a model at a 512 × 512 resolution, in which all successful
components from this chapter and the next chapter get combined. During the training,
the FID metric is evaluated every 80 000 training images and a network snapshot is
saved. For all experiments the Adam optimizer is used and none of the hyperparame-
ters, such as the learning rate or the batch size, are modified. During the training, we
also augment the images from the dataset by randomly flipping them horizontally.

32 Conditional StyleGAN Experiments

Training Results

After training the baseline model for a duration of 5 million images, shown to the
discriminator, we measure a lowest FID of 4.46, as shown in Figure 5.3 (left). This value
is relatively low and indicates that the generated image distribution is close to the image
distribution of the training data. This is also confirmed when inspecting some of the
generated images in Figure 5.3 (right). Those images look very realistic, as they show a
lot of detail and variation.

Figure 5.3: The FID graph of the baseline training and curated example images.

Poor Quality Examples

Next to the good results from Figure 5.3, some images also look very poor and sometimes
even fully collapse. Collapse in this context means that the images show random shapes
and colors, which do not correspond to the appearance of a car. Generally, it showed
that the image quality decreases, if we either generate with labels that are rare in the
dataset (Figure 5.4 left), or if we use label combinations that do not exist in the real
world (Figure 5.4 right).

Figure 5.4: Example images with low quality. The images on the left were generated
with rare labels from the dataset and the images on the right with new label combina-
tions.

5.6 Baseline Model 33

In order to measure the quality of the images that have been generated from random
label combinations, we calculate the FID using randomized input labels. While the
traditional FID with real labels scored 4.46, we receive a considerably higher FID of
8.2 when using randomized labels. Although we expect this value to be higher, given
that the traditional FID uses the real labels to produce a closer image distribution to
the real images, such a discrepancy still underlines that the quality of randomized label
combinations is significantly worse.

Conditional Accuracy

In addition to the overall image quality, we also evaluate how well the model learned each
individual label. To do so, we calculate the conditional accuracy metric from section 5.2
during the training. As shown in Figure 5.5 (left), the conditional accuracy gradually
increases over the course of the training. While simple labels such as the image ratio
are already learned within few training steps, other labels such as the model or the
manufacturer take considerably longer.

Figure 5.5: The output of the conditional accuracy metric during the training (left)
and a matrix of some of the color and background labels (right). It shows that especially
green and purple, which are rare colors in the dataset, show incorrect results.

To demonstrate the conditional capabilities of the model, we create a matrix in which we
create the same car with different backgrounds and colors (Figure 5.5 (right). It shows
that the model has successfully learned most of the labels and is also able to synthesize
images from new label combinations. While most colors worked very well, green and
purple did not. Instead of green or purple, the model sometimes produced red or silver
cars. Given that purple and green are very rare in the dataset, it indicates that less
common classes are more difficult to train. It might also explain the low conditional
accuracy for the color label, which only scored 75.2%, as shown in Figure 5.5 (left).
Another explanation for this low accuracy might also be the lower performance of the
classification network, which showed problems differentiating between silver, gray and
black.

34 Conditional StyleGAN Experiments

Label Entanglement

Another problem that arises when generating images with the baseline model, is label
entanglement. Label entanglement describes, how much the prediction of a classifier
changes if an unrelated label gets changed. An example for this is shown in Figure 5.6,
where we change the rotation of a car, which also causes the color to change. To measure
this quantitatively, we calculate the label entanglement metric from section 5.3. The
result of this metric can be visualized in a matrix as shown in Figure 5.6. In this matrix,
each row corresponds to one of the seven classifiers and each column corresponds to the
label that is being modified. The diagonal is not filled with values, as we expect the
prediction of the classifier to change if a class of the same label gets changed. Generally,
a high value states that the classifier prediction changes often when changing a different
label, which indicates that those labels are strongly entangled.

Figure 5.6: Two examples where an image attribute changes when changing an unre-
lated label (left) and the matrix of the label entanglement metric (right). All values are
in %. The total average of all entanglement probabilities is 28.5%

In the entanglement matrix of Figure 5.6, it shows that especially the model prediction
changes if the manufacturer label is changed. This was the case in 83% of the times,
which indicates that those two labels have the strongest entanglement of all labels. This,
however, is expected, considering that the model label always implies the manufacturer
label in the real data. The prediction of the manufacturer, on the other hand, did not
change as much, when changing the model label. This also makes sense, given that
many manufacturers in the dataset have multiple car models. Another intuitive label
entanglement is found for the image ratio classifier. It shows very low entanglement
values for all of the labels, apart from the background label. The background label
changed the ratio prediction in 14% of the times, while the other labels changed it in
fewer than 2%. Since both the background label and the ratio label describe similar
image regions, it could explain that those have a higher entanglement.

5.6 Baseline Model 35

Summary

In Table 5.1, we give an overview of the four metric results. Those will be compared to
the following experiments in the next sections.

Experiment FID ↓ FID Random ↓ Cond. Accuracy ↑ Label Entanglement ↓
Baseline 4.46 8.20 82.4% 28.5%

Table 5.1: An overview of the conditional image synthesis metrics measured on the
baseline model. (↓: lower is better, ↑: higher is better)

In summary, it showed that the StyleGAN works very well when it is trained as a Con-
ditional GAN. It manages to learn the semantics of all seven labels from the dataset
and produces realistic images. On the downside, however, we observed that the images
start to look considerably worse as soon as we generated images from rare labels or
with an unseen label combinations. In addition, the labels were also found to be highly
entangled. After changing one of the classes, often other unrelated attributes changed as
well. In order to avoid those problems, we propose three major approaches, how the per-
formance of the conditional StyleGAN might further improve. Those three approaches
are:

• Changing the Label Sampling : The first approach proposes two alternatives for the
label sampling method during the training to increase the generalization capabili-
ties of the model,

• Separate Label Mapping : the second approach tests different methods to combine
the label with the latent vector in the generator to separate the random input from
the label input,

• Discriminator with Label Information: and the last approach provides the discrim-
inator with additional information of the labels, so that it can adapt its feature
maps depending on the input label.

36 Conditional StyleGAN Experiments

5.7 Label Sampling

The first experiment targets the variety of the generated images and in particular the
quality of the images when generated with label combinations that are not well repre-
sented in the dataset. Especially when training a conditional generative network, it is
interesting to see how the generator produces images from label combinations that do
not exist in the dataset or even in the real world. With the baseline model, however, we
observed that images generated from real label combinations yield a much higher quality
than images generated from random label combinations. With the goal of avoiding this
problem, we propose different label sampling methods. This means that different label
distributions for py in the min-max value function are tested.

min
G

max
D

V (D,G) = Ex,y∼pdata(x,y)[logD(x, y)] + Ez∼pz(z),y∼py(y)[log(1−D(G(z, y), y))]

(5.9)

In the baseline model py is set to pdata, i. e., the generator receives the real labels from
the training data. This, however, might bring the risk that the generator reaches a state
at which ’it learns to reproduce each training image based on the conditional data input’
[Gau14]. For this reason some literature suggests to use random label sampling [Gau14].
Since, however, some labels from the car dataset have a strong connection, such as the
car model and the car body, we hypothesize that the training performance could reduce if
all labels were sampled at random. For this reason, we propose two alternative sampling
methods that are designed to increase the generalization capabilities of the model, while
also maintain some of the relationships between the labels. Both sampling methods are
separately introduced in the following two sections, along with their training results.

5.7.1 Soft Label Randomization

The first sampling method for this experiment is soft label randomization. This method
aims to combine the random label sampling with the label sampling from the training
dataset. To do so, we first draw the labels from the dataset and then randomly replace
some classes with a random class. This is done with a probability of ρ = 25%. By
doing so, we replace 7 · 0.25 = 1.75 of the seven labels in the concatenated label vector
on average. With this randomization, we produce a considerably larger variety of label
combinations, while still retaining some information about the relationships between the
labels.

Training Results

After Training the StyleGAN with the soft label randomization method for five million
training images, it showed that the FID decreased considerably slower than the baseline

5.7 Label Sampling 37

model. While the baseline model reached a FID of 4.46 after five million images, the
model with the randomization only measured a FID of 7.63. This suggests that the
image quality is much worse with the soft label randomization method.

Figure 5.7: The FID graph over the training of the model with soft label randomization.

An even larger difference, however, can be found when synthesizing some example im-
ages. This is done in Figure 5.8, which underlines that the images look relatively good
when using the label combinations from the dataset (first row), but immediately start
to collapse as soon as one of the labels gets replaced by a random label (second row).

Figure 5.8: Example images generated by the model with soft label randomization.
The left images were generated with label combinations from the training data and the
right images with label combinations, where one class is randomized.

An explanation for this effect might be that the generator now has to simultaneously
solve two tasks with very unbalanced difficulty. On the one hand, it synthesizes images
from real label combinations and on the other hand it synthesizes images from random
label combinations that do not exist in the dataset. Since the discriminator only receives
real label combinations for real images from the training data, it is more likely that the
generator is able to trick the discriminator with fake images that were generated from
real label combinations. If that happens, the generator then receives a positive feedback
from the discriminator, which helps to improve the images generated by the real labels,

38 Conditional StyleGAN Experiments

even further. This could lead to a situation in which the generated images with real
labels improve faster than the images with random labels. At the same time, as the
discriminator also improves at detecting real and fake images, it then easily detects the
fake images from random labels combinations. As a result, the generator then receives
large loss values for the random labels, which eventually causes the images to collapse.
This would explain why the images, generated by real label combinations from the
dataset still produce realistic outputs, while the images with random labels collapse. It
also explains why the FID metric is relatively low, although many images only show
random outputs. This is because the FID exclusively uses the labels from the dataset.
This is changed in the fourth proposed metric, which calculates the FID on randomized
labels. While this metric scored a FID of 8.20 for the baseline model, it now scores a
FID of 224.49. This value is considerably higher and underlines that almost all of the
images have collapsed, when using randomized label combinations.

Figure 5.9: Generator loss graph over the training of the baseline model and the soft
label randomization model. It shows that the loss is much more stable in the baseline
training.

This theory would also explain the loss graph of the generator over the training (Fig-
ure 5.9). While the generator loss is very consistent in the baseline model, it is much
more unstable when training with randomized labels. This might be because the loss
reaches very low values if the current training batch contains a lot of real labels from the
dataset labels, while it gets very high if most of the labels are randomized. Contrary to
other machine learning algorithms, a low loss in the generator does not indicate a good
training performance. Instead, with GANs, it is aimed to reach an equilibirum, where
the generator and the discriminator do not further optimize. Therefore, the lower loss
values from the label randomization training do not indicate any improvement compared
to the baseline model.

In summary, this experiment showed that it can be very risky to provide the generator
with different labels than the discriminator. To avoid this, we propose an alternative

5.7 Label Sampling 39

approach in the next subsection that keeps the balance between both models while still
increasing the variety of label combinations during the training.

5.7.2 Label Dropout

The second sampling method aims to increase the variety of label combinations by ran-
domly removing some of the labels from the dataset during the training. This way, more
distinct label combinations are created while both the generator and the discriminator
still receive the same label distribution. This was not possible with the label randomiza-
tion without creating inconsistent training data. With this experiment, we expect that
each label is trained more independently to the other labels, which might improve the
quality of the images when they are generated with random labels and also the condi-
tional accuracy. Similar to the previous experiment, we remove 25% of the seven labels
in each label vector. This means that the corresponding label vector segment will be
filled with zeros.

Training Results

While the previous experiment with the soft label randomization caused the images to
collapse for any new label combinations, the label dropout method showed a very good
performance. Compared to the baseline model it even improved the lowest FID from
4.46 to 4.18, as shown in Figure 5.10.

Figure 5.10: FID over the training of the model using label dropout.

40 Conditional StyleGAN Experiments

Image Quality for unseen Label Combination

The biggest difference, however, is found when calculating the FID with unseen label
combinations. The label dropout experiment then scored a FID 6.73, whereas the base-
line model only scored a FID of 8.20. This underlines that the images generated from
new label combinations, look considerably more realistic compared to the baseline model.
This is also demonstrated in Figure 5.11 showing some example images generated from
real and randomized labels.

Figure 5.11: Example images generated from real label combinations (left) and unseen
label combinations (right).

Conditional Accuracy

Next to the FID metric, we also measure the conditional accuracy. This metric performed
slightly worse than the baseline model. This is especially the case for the color and the
background labels. While the color label had an accuracy of 75.5% in the baseline
model, it only scores 70.1% with the label dropout. The same goes for the background
label, which decreased its accuracy from 89.6% to 85.2%. A reason for this might be
the number of labels in the dataset. It shows that only 41% of the images have a color
label and only 59% have a background label. This is relatively low compared to the
other labels, which have a coverage of over 95%. If the labels that already have a low
coverage get reduced even more by the label dropout, it then increases the training time
for those labels. A possible solution for this problem might be to set the label dropout
probability relative to the dataset coverage of each label.
Even though the body label also only has a coverage of 53%, it is hypothesized that this
label is still learned well, given that it is semantically connected to the car model and
manufacturer.

Experiment Model Color Manufact. Body Rotation Ratio Backgr. Average
Baseline 61.3% 75.6% 78.4% 80.4% 92.9% 98.9% 89.6% 82.4%
Label Dropout 60.1% 70.1% 81.8% 80.9% 93.4% 98.2% 85.2% 81.4%

Table 5.2: The results of the conditional accuracy for the baseline model and the label
dropout experiment. It shows that especially the color and the background accuracy
decreased with the label dropout method. (higher is better)

5.7 Label Sampling 41

Label Entanglement

Although the average conditional accuracy did not improve with the label dropout
method, it showed that the label entanglement slightly decreased compared to the base-
line model. This is visualized in Figure 5.12.

Figure 5.12: The entanglement matrices for the model with the label dropout, com-
pared to the baseline model. Each row represents the classifier and each column the
modified label. It shows that the model, the manufacturer, the body and the rotation
labels are less entangled using the label dropout. All labels are in %. (lower is better)

There, it shows the label entanglement matrix of the label dropout method compared to
the baseline model. The matrix on the right also highlights which dependencies between
the labels have increased or decreased the most. This underlines that especially the high
entanglement between the model and the manufacturer decreased. Although this value
is sill the overall highest, it is considerably smaller with only 75.2% compared to 83.4%.
Similar results were also observed for the manufacturer, the body style and the rotation
label. On the downside, however, we observe a higher entanglement for the background
and color labels. Given that those two labels also reduced in conditional accuracy
the most, we hypothesize that a low conditional accuracy implies a high entanglement.
Nevertheless, the total average of all probabilities combined still decreases by 0.7%. This
indicates that the label dropout helps to decrease the dependencies between the labels.

Training with 50%

Given that this experiment improved both FID metrics and the label entanglement
metric, we consider this experiment as successful. For that reason, we perform another
experiment with a higher dropout probability. Instead of 25%, we now test 50%.
This training, however, performed very poorly. For the first two million training images,
the FID did not decrease below 30, at which point other experiments were already below
10. A reason for this might be that the model receives too few real label combinations
from the dataset. This is because, only with a probability of (1 − 0.5)7 ≈ 0.0078, non
of the labels get removed in a training example. Since the FID is calculated with the
label combinations from the dataset, the generated images then look very unrealistic, if

42 Conditional StyleGAN Experiments

they rarely occur during the training. The FID graph over the training with 50% label
dropout is shown in Figure 5.13.

Figure 5.13: The FID graph over the training, when using a label dropout probability
of 50%. It shows that the FID does not decrease below 30 after about two Million
iterations, which is why the training was interrupted. (lower is better)

Summary

Altogether, the results of the label dropout sampling method showed that the model
generally benefits from randomly removing some of the labels. As shown in Table 5.3,
this component improved both FID values and the label entanglement. We hypothesize
that the decreased conditional accuracy might be explained by the low dataset coverage
for the color and background label. Therefore, it might be a good idea to adapt the
label dropout probability for each label individually. We hypothesize that this could
even improve the conditional accuracy, given that we measured a higher accuracy for
the manufacturer and the rotation labels when using this sampling method.

Experiment FID ↓ FID Random ↓ Cond. Accuracy ↑ Label Entanglement ↓
Baseline 4.46 8.20 82.4% 28.5%
Label Dropout (25%) 4.18 6.73 81.4% 27.8%
Label Dropout (50%) 39.60 - - -

Table 5.3: An overview of the conditional image synthesis metrics of the label dropout
experiment. (↓: lower is better, ↑: higher is better)

5.8 Separate Label Mapping 43

5.8 Separate Label Mapping

The next experiment focuses on the method of how the labels are integrated into the
latent space. Currently, in the baseline model, the label is first multiplied by a trainable
tensor T and then concatenated with the input latent vector z [OS19] [Stya]. The result-
ing vector is then forwarded through the mapping network to the disentangled latent
space W , after which it is used to modulate the weights of the convolutional layers.
Although this method has proven to be working well, as shown in the baseline experi-
ment, we test some alternatives to this approach. Instead of combining the label with
the latent vector before the mapping network, we experiment how the model performs if
the labels are mapped separately to the latent vectors and then combined afterwards in
W . This approach is similar to the GAN-Control paper, published in 2021 by Shoshan
et al. [Sho+21], which uses a separate mapping network for each individual label and
then concatenates each mapped label vector. However, instead of using seven individual
networks for each of the labels, we use one combined mapping network. This label map-
ping network then receives the 127 dimensional concatenated label vector that contains
all seven labels at once and maps it to a 512-dimensional vector. An overview of the
modified network architecture is visualized in Figure 5.14, showing one mapping network
for the latent vector and one for the label. After both the label and the latent vector
have been mapped to the disentangled latent space, they are combined and forwarded
to the weight modulation component. The method for this combination can range from
simply adding or multiplying to more complex operations such as a dense layer. The
two combination methods that we test are adding and concatenating. Due to the signif-
icantly lower dimensionality of the label vector compared to the 512-dimensional latent
vector, the label mapping network only uses 128 neurons, instead of 512, in each of the
eight fully connected layers. Apart from that, both network architectures are the same.

Figure 5.14: The StyleGAN generator architecture with the separate mapping. For
the combination method adding an concatenating are tested.

With this modification, we hypothesize that the model might benefit from the additional
label mapping network, since it should be easier for the the generator to differentiate
the label inputs from the random latent inputs. By doing so it might facilitate a better
organization of the latent space W , which in turn could improve the image quality.
This is because, according to Karras, Laine, and Aila, ”it should be easier to generate
realistic images based on a disentangled representation than based on an entangled
representation” [KLA18a]. In the following, we evaluate the experiments with both
combination types, adding and concatenating, simultaneously.

44 Conditional StyleGAN Experiments

Training Results

After training the conditional StyleGAN with both variants, it showed similar FID results
compared to the baseline model. While the experiment, in which the two mapped vectors
are added, performed slightly worse in FID, the experiment with the concatenation
method actually improved the FID. This is shown in Figure 5.15, which displays the
FID over the training of both models, compared to the baseline model. This hints that
the model using the concatenation method slightly benefits from the additional label
mapping network.

Figure 5.15: The FID results over the training of the models with the separate label
mapping network. It shows that the concatenation method slightly improved the FID
compared to the baseline model, while the adding method performed consistently worse.
(lower is better)

FID with Randomized Labels

A more significant difference between those models and the baseline model appears when
calculating the FID with randomized label combinations. There, the baseline model only
scored a randomized FID of 8.20, while both new models improved this value, scoring a
FID of 6.94 with the concatenation method and a FID of 6.96 with the addition method.
Both values are significantly lower, which suggests that the separate mapping network
increases the generalization capability and also possibly the robustness against creating
collapsed images. Such collapsing images were often observed in the baseline model
when generating images from randomized label combinations that did not exist in the
dataset.

5.8 Separate Label Mapping 45

Label Entanglement

Next to the improved quality for images with unseen label combinations, the label en-
tanglement decreased in both experiments, as well. This is visualized for the model with
the concatenation method in Figure 5.16.

Figure 5.16: The entanglement matrices for the baseline model and the model with
the separate label mapping network that concatenates the mapped vectors. Each row
represents the classifier and each column the modified label. All values are in %. (lower
is better)

It shows that all labels apart from the car model and the car body style decreased their
entanglement when using a separate mapping network. Although the entanglement
between the body and the manufacturer increased substantially, we observe an overall
decrease in entanglement of 0.9%. This underlines that the labels are less connected
when using the separate label mapping network. A similar observation was also made
with the model, where the mapped label and latent are added. There, however, the label
entanglement only decreased from by 0.5%.

Conditional Accuracy

Although the model has improved its label entanglement and therefore possibly created a
more organized latent space, no improvement was observed for the conditional accuracy.
Instead, both models even slightly decreased their overall accuracies. This is shown in
Table 5.4, where only the rotation and the image ratio score better accuracies when
using the separate label mapping. All other accuracies, however, scored slightly worse.

Experiment Model Color Manufact. Body Rotation Ratio Backgr. Average
Baseline 61.3% 75.6% 78.4% 80.4% 92.9% 98.9% 89.6% 82.4%
Separate Mapping (add) 56.5% 73.3% 76.5% 77.7% 93.3% 99.1% 88.0% 80.6%
Separate Mapping (concat) 58.9% 74.6% 77.2% 77.4% 94.2% 99.1% 88.3% 81.4%

Table 5.4: The results of the conditional accuracy for the separate label mapping
experiments. It shows that the baseline model performs better for almost all labels.

46 Conditional StyleGAN Experiments

Summary

An overview of all four conditional metrics, measured on the models with the separate
label mapping network is shown in Table 5.5.

Experiment FID ↓ FID Random ↓ Cond. Accuracy ↑ Label Entanglement ↓
Baseline 4.46 8.20 82.4% 28.5%
Separate Mapping (add) 4.72 6.96 80.6% 28.0%
Separate Mapping (concat) 4.24 6.94 81.4% 27.6%

Table 5.5: An overview of the conditional image synthesis metrics of the separate
mapping experiments. (↓: lower is better, ↑: higher is better)

Overall, it showed that the model with the separate mapping network especially im-
proved the image quality when synthesizing with random label combinations. In addi-
tion to that, also the label entanglement slightly decreased for both models, compared
to the baseline model. This hints that the separate mapping helps the model to find
a better organization for the labels, in which each label semantic is encoded more in-
dependently from the other labels. We hypothesize that the label entanglement might
improve even further, if we combine this experiment with the label dropout method from
the last section. This will be tested at the end of this chapter, where we combine all
successful components in one model. Before that, however, we conduct another exper-
iment, where we test, whether the discriminator possibly benefits from a similar label
mapping network as well.

5.9 Label Information in the Discriminator

The next experiment aims to improve the performance of the discriminator by utiliz-
ing the information of the labels. Currently, in the baseline model, the discriminator
receives an input image and produces an output vector that has the same shape as the
label. This output vector is then masked by the one-hot encoded input labels to re-
move all outputs that do not correspond to the classes of the current label. With this
method, the model successfully learns the semantics of each class, as demonstrated in
the baseline experiment. We, however, hypothesize that the evaluation of the discrim-
inator might further improve if it were able to use the information about the current
label already within the feature maps. The discriminator could then focus on different
image attributes, depending on the given labels. This idea is similar to an attention
mechanism [Vas+17], which is designed to direct the focus of the model towards spe-
cific regions of the image. However, instead of using any information from the previous
feature maps, like in a traditional attention model (which has already been applied to
GANs [Zha+19]), we proposes to use the information given by labels. To do so, we
design a modified discriminator architecture, similar to the StyleGAN generator. In
this architecture, the discriminator first maps the input label via a separate mapping

5.9 Label Information in the Discriminator 47

network, like in the previous experiment from section 5.8 and then uses the mapped
labels to modulate the weights of the convolution layers, analogously to the StyleGAN
generator. To do so, we apply the weight modulation component from subsection 2.2.2.
An overview of the modified discriminator architecture is visualized in Figure 5.17.

Figure 5.17: The architecture of the modified discriminator that uses an input label
to modify the weights of the convolutions with the weight modulation component from
the StyleGAN generator.

Training Results

After training the model with the modified discriminator, the FID initially showed very
good results. As demonstrated in Figure 5.18, the FID decreases considerably faster
when using the additional label information also within the discriminator. Eventually,
however, at about 4 million training images, both networks perform very similarly, which
is why the both FID scores are very close to each other. Nevertheless, the model with
the modified discriminator scored slightly better with a lowest FID of 4.37 compared to
the lowest FID of the baseline model, which was 4.46.

Figure 5.18: FID graph of the training with the additional label information in the
discriminator. It shows that the FID decreases much faster at the beginning of the
training. (lower is better)

48 Conditional StyleGAN Experiments

Conditional Accuracy

A possible explanation for this difference in FID at the beginning of the training might
be that the model mainly improved its performance for coarse image features. This
would explain the results of the conditional accuracy metric, shown in Table 5.6. There,
we observe that the model improved its accuracy for the background, the color and the
rotation, which are all coarse features that correspond to large areas of the image. Finer
details, like the manufacturer or the model, on the other hand, decreased their accuracy
considerably. Therefore, also the average accuracy for all labels combined also slightly
decreased.

Label Baseline Discriminator with Label Info Difference
Background 89.6% 91.7% +2.1%
Color 75.6% 77.5% +1.9%
Rotation 92.9% 94.2% +1.3%
Ratio 98.9% 99.1% +0.2%
Body 80.4% 78.7% -1.7%
Manufacturer 78.4% 74.6% -3.8%
Model 61.3% 55.5% -5.8%
Average 82.4% 81.6% -0.8%

Table 5.6: The conditional accuracy of the model trained with the additional label
information in the discriminator.

Feature Map Analysis

Table 5.6 showed that the accuracy for the background label improved the most. A pos-
sible reason for this can be found when inspecting the feature maps of the discriminator
using the Grad-CAM method [Sel+17]. This method, introduced by Selvaraju et al.,
visualizes the feature maps by calculating a linear combination of all channels based on
their average gradient to an output neuron. This way it can be inspected, which regions
of the image have the biggest influence on the value of an output neuron. Since the
StyleGAN discriminator also uses one output neuron for each class, this method can
also be applied here. To do so, we first input a real image combined with a label into
the discriminator. After that we calculate the gradient from the output neuron that
is responsible for the background output to the feature maps. Then, we calculate the
channel wise average of each gradient, which is used to calculate a linear combination
of all feature maps. This means that we multiply each feature map with its average
gradient and then calculate the sum. The output of that can then be used as a heatmap
as shown in Figure 5.19.

5.9 Label Information in the Discriminator 49

Figure 5.19: The Grad-CAM visualization for the discriminator
Left: The Grad-CAM visualization for the baseline discriminator. Center: The Grad-
CAM visualization for the modified discriminator without a background label. Right:
The Grad-CAM visualization for the modified discriminator with a background label.
In this visualization, regions of the background are highlighted the most.

There, it shows the Grad-CAM visualizations for three example images, using the gra-
dient from the feature map of the 16× 16 layer of the discriminator to the background
neuron. The first column shows the Grad-CAM visualization using the baseline dis-
criminator, the second column shows the visualization for the modified discriminator,
however, without a background label and the third column shows the visualization for
the modified discriminator with a background label. It shows that the last column,
where we use the modified discriminator with a background label, highlights the back-
ground the most, while also removing some focus from the car. This indicates that the
discriminator utilizes the background label to modify the convolution filters so that more
regions in the background have a higher influence on the output.

Although the examples from Figure 5.19 might look convincing, this observation was not
consistent for all images. This is likely because the discriminator sometimes predicts the
background of a real image as fake, in which case we observe a low activation with the
Grad-CAM method. Nevertheless, it gives an idea of how the discriminator changes
its activation based on the input label. However, in order to measure the effect of
the additional label input for the feature maps more quantitatively, we forward a large
number of real images to the discriminator and calculate the average intensity difference
in the feature maps with and without the label input. By doing so, it underlines which
labels cause the largest intensity change in the feature maps. This is done for each layer
individually, so that we can also observe at which layers the additional label has the

50 Conditional StyleGAN Experiments

biggest influence. The result of that analysis is shown in Figure 5.20. There, each cell
corresponds to the average feature map intensity difference of 1000 real images with and
without the label input. It highlights that the intensity is changed much more in the
layers that have a smaller resolution. This, again, hints that the label information is
mostly used to improve coarse image features. In addition to that, it also shows that
the background label causes the larges intensity difference of all labels. This correlates
with the increased conditional accuracy (Table 5.6) for the background label.

Figure 5.20: The average intensity difference for each layer in the discriminator when
removing a label. All values are multiplied by 1000.

Summary

Altogether, it showed that the additional label information in the discriminator helps the
model to produce better coarse attributes such as the image background or the rotation
of the car. This was shown with the conditional accuracy metric that improved for the
background and rotation label but decreased for the car model and manufacturer label.
It especially improved the FID at the beginning of the training and also lowered the
overall FID. In addition to that, also the label entanglement slightly increased. We,
however, hypothesize that this is connected with the decreased conditional accuracy.
Given that the modification brings some additional complexity to the model, it might
benefit from a longer training. Especially, because we observed that all models first
focus on coarse attributes and later on finer attributes. This could mean that this
component might also benefit the smaller image features, if we use a longer training
duration. However, in order to test this, we would also have to increase the length of all
other experiments as well, so that the experiments are still comparable to each other.
Therefore, we will not increase the training length for this experiment.

5.9 Label Information in the Discriminator 51

Table 5.7 shows the conditional metric results for the experiment with the additional
label information in the discriminator.

Experiment FID ↓ FID Random ↓ Cond. Accuracy ↑ Label Entanglement ↓
Baseline 4.46 8.20 82.4% 28.5%
Discriminator with Label Info 4.37 8.20 81.6% 29.0%

Table 5.7: An overview of the conditional image synthesis metrics measured on the
baseline model. (↓: lower is better, ↑: higher is better)

52 Conditional StyleGAN Experiments

5.10 Combination Experiment

In a last experiment we test how well the proposed modifications work together. To do
so, we select the best configuration of each experiment and combine them into one model.
Those modifications are the label dropout component, the separate label mapping with
the concatenation method, and the additional label information in the discriminator. To
give a brief overview of their results, Table 5.8 summarizes the metrics for each of the
three experiments compared to the baseline model. Generally, it shows that both FID
results have improved in all experiments, while the conditional accuracies decreased.
The label entanglement, on the other hand, improved for the label dropout and the
separate mapping, while it scored worse for the discriminator with label information.

Experiment FID ↓ FID Random ↓ Cond. Accuracy ↑ Label Entanglement ↓
Baseline 4.46 8.20 82.4% 28.5%
Label Dropout (25%) 4.18 6.73 81.4% 27.8%
Separate Mapping (concat) 4.24 6.94 81.4% 27.6%
Discriminator with Label Info 4.37 8.20 81.6% 29.0%

Table 5.8: An overview of the conditional image synthesis metrics all successful com-
ponents from the last sections. (↓: lower is better, ↑: higher is better)

Training Results

After training the model with all three components combined, it showed very good but
also very poor results. Very good results can be found when inspecting the FID graph
over the training in Figure 5.21. There it shows that the training reaches considerably
lower FID results compared to the baseline model. While the baseline model scored a
lowest FID of 4.46, the combination model now reaches a FID of 3.95. This is also lower
than any other previous experiment in this thesis, underlining that the image quality
significantly improves when using all components at once.
The same holds true for the FID that is calculated with randomized label combinations.
There, the combination model scored a 5.50 FID, which is also an overall best for this
thesis. This indicates that the model is less likely to collapse when it is given a label
combination that did not exist in the dataset. This is can also be observed when gener-
ating example images. As shown in Figure 5.22, the image quality is considerably better
when sampling unseen label combinations with the combination model. For compari-
son, we use the same label combination in each column in Figure 5.22 and generate two
images with each model. In the third column it shows the biggest quality discrepancy.
There, we generate a car with the manufacturer ’Opel’, the model ’Audi A3’ and the
body ’sports car’. This results in a fully collapsed image for the baseline model, while
we observe a relatively good quality for the combination model. Although, some bad
examples can also be found in the combination model, we observe that the images are
consistently better than in the baseline model.

5.10 Combination Experiment 53

Figure 5.21: FID Graph of the combination training compared to the baseline model.

Figure 5.22: Example images from the baseline model (first row) and the combination
model (second row). The label combinations are the same in each column and did not
exist in the dataset.

54 Conditional StyleGAN Experiments

On the downside, however, the conditional accuracy scores much worse results. This is
shown in Table 5.9, where the accuracy is lower for every label when using the combina-
tion model. This might indicate that the model improves the image quality at the cost
of its conditional capability.

Experiment Model Color Manufact. Body Rotation Ratio Backgr. Average
Baseline 61.3% 75.6% 78.4% 80.4% 92.9% 98.9% 89.6% 82.4%
Combination 44.9% 69.1% 71.8% 76.2% 91.5% 98.0% 85.6% 76.7%

Table 5.9: The results of the conditional accuracy for the baseline model and the combi-
nation experiment. It shows that all accuracies are consistently lower in the combination
model. (higher is better)

We believe that this is a rather fundamental problem of the model, which is related to
our conditional loss function in combination with the input label vector. In section 5.5,
we defined the output of the discriminator as:

D =
127∑
i

D′
i · yi (5.10)

Here, we use the input label as a mask for the output neurons of the discriminator
(D′) and calculate the sum. After that we apply the sigmoid function and forward the
result to the loss function. Although this method has shown good conditional results
in the previous experiments, it might bring a major disadvantage, since it allows the
model to exclusively improve over few labels. This is because we calculate the sum of all
discriminator outputs. Therefore, it might enforce the generator to produce a very good
feedback in the discriminator for simple image features such as the image ratio or the
background, while it neglects more difficult labels such as the car model. This in turn
would increase the conditional accuracy for some labels but decrease it for the others.
In the combination experiment, however, we observed that none of the accuracies have
improved. This likely has to do with the ’real / fake’ label that we append to the input
label. As described in section 5.5, we add a fixed 1-entry to the label vector, so that
the discriminator can decide whether a image is real or fake independently to the given
labels. This was done, since the seven labels from the car dataset do not cover all image
features. We, however, hypothesize that this ’real / fake’ label, in combination with the
sum of the discriminator outputs, causes the network to mainly improve over the image
quality task, while the conditional task gets neglected.
This theory is also supported when inspecting the average activations that the generator
causes in the discriminator. This is shown in Table 5.10. While the output for the ’real /
fake’ neuron is at 0.33, all other outputs are negative. This indicates that the generator
has the highest success for this output neuron compared to the others. Therefore,
we assume that the ’real / fake’ label dominates the parameter optimization for the
generator.

5.10 Combination Experiment 55

Real / Fake Model Color Manufact. Body Rotation Ratio Backgr.
0.33 -0.96 -0.24 -0.77 -0.94 -1.68 -2.29 -0.91

Table 5.10: The average discriminator output for 100 fake images before calculating the
sum. It shows that the real / fake entry causes the largest activation in the discriminator.

Summary

Altogether it showed that the combination experiment improved the image quality con-
siderably. Especially when synthesizing images from random label combinations, we
observe a consistently better image quality compared to the baseline model. This im-
provement, however, comes at the cost of the conditional accuracy. We hypothesize
that this is due to the formulation of the loss function in combination with the ’real /
fake’ label. Although this issue should have also affected all previous experiments, we
believe that the combination of all modifications amplifies this problem. Therefore, we
assume that the modifications from this chapter, in general, help the model to optimize
its parameters, even though the loss function might not be suitable. Nevertheless, given
that this model produces an overall best FID for randomized label combinations, we
still consider this experiment as successful. Therefore, we assume that the components
should also improve the performance of a model that uses an alternative loss function.
Since this problem was found at a very late stage of the experiments, we will not repeat
all of the experiments with a changed loss function. For the same reason, we will also
use this loss function for the experiments in chapter 7. There, however, this should not
affect the results as much, given that we focus on synthesizing a 3D rotation, for which
we will design an additional loss.

56 Conditional StyleGAN Experiments

5.11 Summary

In this chapter, we performed a total of eight trainings to test the performance of the
three main approaches. Those three approaches were: A modified label sampling method
during the training, a separate label mapping network in the generator, and a discrimi-
nator modification that allowed to use the information of the labels in the feature maps.

• The first approach showed that the model generally benefits from additional vari-
ation in the label combinations, although it is detrimental to provide different
labels for fake images and real images. In addition to that we also observed that
the model does not converge if we remove too many labels in order to create more
variation.

• The second approach underlined that a separate label mapping network can in-
crease the image quality for randomized label combinations and also decrease en-
tanglement between the labels.

• The last approach showed that additional label information in the discriminator
can help synthesizing coarse image features, which reduces the FID especially at
the beginning of the training.

After that, we also performed an experiment in which we combined all modifications.
This experiment scored the best FID results for both real and randomized labels. It was
especially observed that the generated images were considerably less likely to collapse
compared to the baseline model. Therefore, we conclude that the combination of all three
components helps the model to significantly improve the image quality. On the downside,
however, the conditional accuracy decreased in this experiment. We hypothesize that
this is because of the formulation of the loss function in combination with the ’real /
fake’ label. For future work, we will test how the model performs with alternative loss
functions. For the rest of this thesis, however, we will keep using the same loss function.
A summary of all results is shown in Table 5.11. This, again, underlines that we receive
the best image quality with the combination model, although the conditional accuracy
decreases.

Experiment FID ↓ FID Random ↓ Cond. Accuracy ↑ Label Entanglement ↓
Baseline 4.46 8.20 82.4% 28.5%
Label Randomization (25%) 7.63 224.59 - -
Label Dropout (25%) 4.18 6.73 81.4% 27.8%
Label Dropout (50%) 39.60 - - -
Separate Mapping (add) 4.72 6.96 80.6% 28.0%
Separate Mapping (concat) 4.24 6.94 81.4% 27.6%
Discriminator with Labels 4.37 8.20 81.6% 29.0%
Combination 3.95 5.50 76.7% 30.3%

Table 5.11: The metric results of all experiment in this chapter. (↓: lower is better, ↑:
higher is better)

5.11 Summary 57

In the following chapters, we will test if we can utilize the rotation label in order to
create a 3D rotation of a car. This is motivated by the observation from section 4.3,
where we were able to rotate a car using the main components of the PCA. Given that
we now have a considerably better control over the car rotation using the conditional
StyleGAN, we test how well we can utilize the discrete rotation labels to synthesize a
continuous 3D rotation. Before that, however, we will first give a brief overview of other
approaches from literature to create 3D models with GANs.

6 3D Image Synthesis with GANs

The idea of synthesizing 3D objects with GANs has become increasingly popular in
recent years. Numerous research groups have proposed various methods to achieve this.
To give a brief overview of the manifold methods, this chapter introduces three main
approaches from literature.

6.1 3D Output Space

The first approach aims to synthesize 3D objects by training a GAN that outputs a 3D
voxel space. One example for this approach is the 3D-GAN introduced by Wu et al.
[Wu+17]. The 3D-GAN utilizes 3D training data, such as the ShapeNet [Cha+15] or
the IKEA dataset [LPT13], to train a GAN that outputs a 3-dimensional object. In
order to do so, the generator uses ’five volumetric fully convolutional layers of kernel
size 4 × 4 × 4’ [Wu+17] that map a random latent vector z to an output space with
the shape 64 x 64 x 64, as shown in Figure 6.1. The discriminator of the 3D-GAN has
a mirrored architecture to the generator and classifies whether the given 3D objects are
real or fake.

Figure 6.1: The architecture of the 3D-GAN generator that maps a random latent
vector to a 3D voxel space. (image source: [Wu+17])

While the 3D-GAN and other similar architectures have shown some success in gener-
ating 3D objects, they still face of two major problems. The first problem is that they
require 3D training data, which is very limited and often based on simulations (e.g., the
CARLA dataset [Dos+17]). And the second problem is the high computing time and
memory cost to train the model. This is because of the expensive volumetric convolu-
tions and their 3D feature maps. For this reason, those methods can not be applied to
state of the art high resolution datasets.

59

60 3D Image Synthesis with GANs

6.2 Internal 3D Representation

The second approach is similar to the first, as it, again, maps a random latent vector to
a 3D voxel space within the generator. Although, instead of forwarding the generated
3D models to the discriminator, a differential projection module is used, to project the
3D representation to a 2D image from a random viewpoint. The resulting 2D image
is then forwarded to the discriminator, which predicts whether it is real or fake. This
allows to use 2D training data to generate 3D data, which is a big advantage over the
previous approach, given the large amount of available 2D image dataset, compared to 3D
datasets. One of the first papers that utilizes this approach is the Projective Generative
Adversarial Network (PrGAN) introduced by Gadelha, Maji, and Wang [GMW16] in
2016. Its architecture is shown in Figure 6.2, visualizing how the generated 3D object
is projected to a 2D image and then forwarded to the discriminator.

Figure 6.2: The generator architecture of the PrGAN, which synthesizes a 3D object
and then feeds a 2D projection of that object to the discriminator. θ and ϕ describe the
height and angle of the viewpoint, respectively. (image source: [GMW16])

Although this approach brings a lot of improvements to the 3D image synthesis with
GANs, given that any consistent 2D dataset can be used, the problem with long training
time and GPU memory consumption persists. For this reason, the method is not applied
to high resolution datasets such as the FFHQ dataset [KLA18b], which has a resolution
of 1024× 1024.

6.3 Alternative Internal 3D Representations

In order to tackle the problem of high computing time and memory consumption, both
previous approaches exhibit, some methods in literature propose alternative internal 3D
representations. One of those methods is the Efficient Geometry-aware 3D GAN (EG3D
GAN) introduced in December 2021 by Chan et al. [Cha+21a]. Similar to both previous
approaches, the main idea of the EG3D model is to synthesize an image from an internal
3D representation. This, however, is done without using the expensive 3D convolution

6.3 Alternative Internal 3D Representations 61

operation. Instead, they design a tri-plane structure of three orthogonally aligned 2D
feature maps, as shown in Figure 6.3. This way, any given point in a 3D space can be
described by a combination of the values from all three feature maps. Those points are
then forwarded to a neural renderer module, where each value combination is decoded
and an internal 3D model is produced. This 3D model is then projected onto 2D feature
maps, based on extrinsic and intrinsic camera parameters. Since the resulting output
feature maps only have a resolution of 128 × 128 × 32, also a super-resolution network
is applied, which outputs images at a resolution of 512× 512× 3. At last, the resulting
high resolution 2D image is then forwarded to the discriminator. In this model, the
StyleGAN2 generator and discriminator are used. This is the same version that we use
in this thesis.

Figure 6.3: The architecture of the EG3D network, consisting of a tri-plane represen-
tation of feature maps and a neural renderer module to synthesize 2D images of 3D
objects. (image source: [Cha+21a])

The EG3D GAN architecture enables the synthesis of high resolution images with 3D
behavior up to 7.8 times faster and with only 6% of the memory consumption [Cha+21a],
compared to some previous approaches that used a voxel space. In addition to the
computational speed up, it also improves the quality of the output images (measured in
FID), compared to similar methods, such as GIRAFFE [NG21] or pi-GAN [Cha+21b].
An example for this is shown in Figure 6.4, demonstrating both the high quality and
the ability to rotate the camera.

Figure 6.4: Example images synthesized by the EG3D GAN. (image source: [Cha+21a])

Altogether, it showed that this approach enables the synthesis of state-of-the-art images
with 3D properties, while also reducing computing time and memory consumption. The

62 3D Image Synthesis with GANs

only downside of this method is that the neural renderer module can be considered a
bottleneck for the generator. While the traditional StyleGAN uses 256 feature maps at
a 1282 resolution, the EG3D model only uses 32. This is considerably smaller and could
compromise image quality.

6.4 Summary

In this chapter, we presented three methods from literature to synthesize 3D models
with GANs. While the first two show significant problems regarding computing time
and memory consumption, given that they require expensive 3D convolution operations,
the third proposes an alternative internal 3D representation to avoid such problems. The
latter successfully produces photorealistic high resolution images with 3D properties in
considerably shorter computing time. The only downside of this method is that the neu-
ral renderer module poses a bottleneck, as the output feature maps have a significantly
fewer channels compared to the traditional StyleGAN. For this thesis, we hypothesize
that such a bottleneck can be avoided by using the traditional StyleGAN generator.
We believe that a 3D rotation can already be synthesized with the standard StyleGAN,
given that we already observed some capabilities of synthesizing 3D-like transformations
in chapter 4. The only problems with the proposed methods from chapter 4 were that a
specific control over certain image features showed to be very difficult. This was because
of the high-dimensional latent space that required an extensive search in order to syn-
thesize images with specific attributes. When training the StyleGAN as a conditional
network, however, it is much easier to control the output images, as shown in the previ-
ous chapter. This motivates the use of the rotation label from the car dataset to create
image transitions with 3D-like behavior. This approach will be tested in the following
chapter.

7 360° Rotation View Experiments

In this chapter, we test how well a continuous 360° rotation of a car can be synthesized
using only the eight discrete rotation labels from the car dataset. To do so, we propose
multiple modifications to the baseline model from chapter 5 and test them in a series
of experiments. Before that, however, we first define three characteristics for good 360°
rotations.

7.1 Rotation Goals and Metrics

The main target of this chapter is to synthesize a 360 degree view of a car. This means
that on the one hand, a car can be synthesized from any given rotation angle and on the
other hand, a smooth animation of a rotating car emerges, if the images are sampled in a
consecutive order. To further specify this goal, the following three desired characteristics
for a generated 360° view of a car are defined:

1. High image quality throughout the whole rotation

2. Consistent rotation speed

3. Correctly synthesizing cars at the input angle

To evaluate how well the following results of the experiments fulfill those characteristics,
other than by inspecting the animation of a rotation by hand, we propose four metrics.

7.1.1 Rotation Image Quality

The first rotation metric focuses on the image quality throughout the whole rotation.
To do so, the metric calculates the FID for images generated at random rotation angles.
Moreover, instead of only sampling discrete rotation angles, like in the dataset, where the
images are annotated with multiples of 45°, any continuous angle from 0° to 360° degrees
can be sampled. The method for synthesizing such continuous angles is explained in the
first two experiments, since this changes depending on the type of experiment. Like in
the conventional FID metric, 50000 images are generated and compared to 50000 images
of the dataset.

63

64 360° Rotation View Experiments

7.1.2 Rotation Linearity

The second rotation metric focuses on the consistency of the rotation speed. To measure
this, a perceptual image distance is measured after rotating a car at a small fixed angle.
This is done by calculating the euclidean distance of the feature vectors from the VGG16
[SZ14] network. In detail, first, an image is generated at a random rotation angle.
After that, a second image with the same label and latent vector is generated, which,
however, is rotated by 2.25° in a random direction. Both images are then forwarded to
the perceptual network, which outputs a feature vector for each image. The distance of
those two feature vectors is then measured using the Euclidean distance. This is repeated
for large number of iterations and an a standard deviation of all distances is measured.
A low standard deviation then corresponds to an overall more consistent rotation and
vice versa. Since the background of an image has a large impact on the perceptual
output, this metric only synthesizes images with black or white backgrounds. Those
backgrounds have shown to be very consistent throughout a rotation, which allows us
to only measure the perceptual distance that is caused by the car. The metric can be
formulated as follows:

Pdist = ||VGG(G(zi, yi, αi))− VGG(G(zi, yi, αi + ϕ))||2 (7.1)

R =

√√√√ N∑
i=1

(Pdist − µ)2 (7.2)

Here, we sample an image in G with three parameters: a noise input zi, a label from
the dataset yi and a random angle between 0° and 360° αi. ϕ is a fixed angle that is set
to 2.25° and µ denotes the average distance of all rotations so that we can calculate a
standard deviation. For this metric we set N to 50000.
One limitation of this metric is, that it never outputs zero, even if the rotation shows an
ideal 3D behavior. This is because, a real 3D car rotation from ’front center’ to ’front
left’ might cause more perceptual changes than a rotation from ’front left’ to ’profile left’.
Nevertheless, this metric is still suitable for comparing the consistency of the rotation
speed across different experiments.

7.1.3 Random Rotation Accuracy

The third rotation metric focuses on generating a car at the correct input angle. This
metric is very similar to the conditional accuracy metric from section 5.2, where a
classifier was utilized to evaluate how well each label was learned by the model. The
same is done in this metric, however, instead of sampling real labels from the dataset,
each rotation is drawn at random. To do so, the rotation vector from a real label is
replaced with a random discrete k · 45° angle. This can be formulated as follows:

7.1 Rotation Goals and Metrics 65

Arot =
1

N

N∑
i=1

equal(Cr(G(z, yi, αi)), αi) (7.3)

Here, we sample αi randomly from {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} and Cr is
the classifier for the rotation label. For this metric we set N to 10000

7.1.4 Continuous Rotation Distance

Like the previous metric, the final rotation metric measures how well the model is
able to synthesize a car at a given input angle. However, instead of calculating an
accuracy for the discrete rotations, we now measure how well the model synthesizes
cars at continuous angles. To do so, we use the 3D bounding box estimator introduced
by Arsalan Mousavian [Mou+17]. This estimator is able to predict the position and
orientation of cars. It was trained on the KITTI dataset [GLU12], which contains about
7000 images of cars in traffic that have accurate annotations for position and rotation.
The 3D bounding box estimator from Arsalan Mousavian first uses a region proposal
network to detect the cars in the image, and then forwards the cropped car regions to
a regression model. This regression model then predicts the angle of the car, which in
turn is used to create a 3D bounding box. An example for this is shown in Figure 7.1.

Figure 7.1: Examples for 3D bounding box estimations on the KITTI dataset (images
source: [3db])

Since it requires some information about the camera calibration matrix to create a 3D
bounding box in a 2D image, a bounding box, as shown in Figure 7.1, can not be cre-
ated for generated images. However, in order to only measure the continuous angle of a
synthesized car, it is sufficient to observe the output of the rotation regression model.
Although the 3D bounding box estimator model was originally designed to predict the
rotation angles of cars in traffic images, it also showed to perform well with the images
from the car dataset. This was tested by hand using a large amount of images from the
car dataset. When predicting the angle of synthesized images, however, it occurred mul-
tiple times that the estimator was off by about 180°. This is likely due to the fact that
some cars can look very similar from opposing sides. Since the purpose of this metric is,

66 360° Rotation View Experiments

to correctly identify continuous rotation angles of a car, those errors are corrected. To
ensure that the GAN still correctly synthesizes the car from all eight discrete rotation
angles, we can apply the previous rotation metric in addition to this metric.
The output for this metric is the median of distances between target rotations and pre-
dicted rotations calculated with 5000 example images. A low output value corresponds
to a low overall distance, which implies that the angle of the generated car is close to the
input angle. We chose the median instead of the average, since some predicted angles
showed large outliers.

Drot = median({|αi − Erot(G(zi, yi, αi))| | i ∈ [1, N]}) (7.4)

Here, Erot stands for the continuous rotation estimator that outputs an angle from 0° to
360°. For the absolute distance, we consider the angle is periodic.

7.2 Problems with the Baseline Model

When using the baseline model from chapter 5, we are able to synthesize a 360° view of
a car by interpolating in between all eight discrete rotation labels in consecutive order.
To do so, we simply perform linear interpolation in between all neighboring rotations
and append the resulting images to a sequence. The resulting image sequence shows
an animation of a rotating car, as demonstrated in Figure 7.2. There it shows the
rotation from the position ’Front Right’ to ’Rear Right’, which is generated by a linear
interpolation from the ’Front Right’ label (a) to the ’Profile Right’ label (b) and then
from the ’Profile Right’ label (b) to the ’Rear Right’ label (c). It shows that, instead
of simply switching from one fixed orientation to the next, the car slowly turns around.
To make the rotation look as consistent as possible, all other labels, the random latent
vector, and the random added noise in the generator are fixed. This allows us to generate
a car at any continuous angle. For instance, in order to generate a car at a 4.5° angle,
the corresponding label vectors for the rotation l0 = 0° and l45 = 45° are selected and
an interpolated vector vint = 0.9 · l0 + 0.1 · l45 is calculated.

Figure 7.2: Example rotation, generated by interpolating from ’front left’ (a) to ’profile
left’ (b) and then from ’profile left’ (c) to ’rear left’.

7.2 Problems with the Baseline Model 67

The reason why the car is rotating, instead of simply fading from one location to the
next, is most likely due to the characteristic of the generator to organize its own latent
space. Organized, in this context, means that visually similar output images originate
from latent vectors that have a close distance and vice versa. In an ideal training, the
generator fills out the whole continuous latent space so that each vector corresponds to
a realistic image. This implies that the generator is pressured to fill the spaces of the
latent space in between the discrete rotations with realistic car images. Since a rotation
is the simplest solution for a possible transformation from one viewpoint to the next,
without collapsing the content of the image at any point, the generator is enforced to
learn the 3D properties of the generated objects in the images. This was also observed in
section 4.3, where we trained the StyleGAN without any labels and explored the latent
space using the PCA. Also then, we observed that the images showed 3D properties
when interpolating along the direction of the second component. Given that we can now
take advantage of the rotation label, it makes the 3D properties considerably easier to
control.
Although the image sequence from Figure 7.2 already shows a realistic looking rotation
of a car, we find some problems when inspecting the rotation at a higher sampling
frequency. In general, we found the following tree major problems:

• A bad transition quality from the front/rear view to the side views of the car,

• collapsing car tires in some intervals,

• and an overall inconsistent rotation speed.

In the following sections, we demonstrate all three problems using same the rotation
from Figure 7.2.

Front / Rear Transition Problem

The first problem that we find, is the bad transition quality when rotating from the
front or rear views towards one of the sides. Instead of a smooth 3D transition, the
car slightly collapses for a short period and then reappears at a changed angle. This is
demonstrated in Figure 7.3.

Figure 7.3: Example rotations around the front and the rear of a car, highlighting the
bad transition quality.

68 360° Rotation View Experiments

A reason why especially this part of the rotation looks very unrealistic, might be that
in those sections the appearance of the car changes the most. Almost no car parts that
are visible from the side view are also visible from the front or rear. We hypothesize
that this makes it very challenging for the model to find a realistic transition in between
those different viewpoints. Another explanation for this problem might be that there
are considerably fewer distinct training examples that show the front or rear of the car.
Even though we balance the rotation classes during the training using oversampling,
there are still a lot less individual training examples from the front or rear compared to
the other views.

Collapsing Car Tires

When looking at the same sequence from Figure 7.2 in smaller angle steps, it shows that
the car seems to jump from one position to another, at about 73°. Especially the front
wheel starts to collapse at 71°, which then reappears at about 75° in a changed location.

Figure 7.4: The same rotation as in Figure 7.2, at a higher sampling rate. It shows
that the wheel of the car collapses at about 73°.

This problem is also highlighted when calculating the perceptual (VGG16) distances
between each rotation step of the interval 45° to 90°. This is done in Figure 7.5, where
each value on the y-axis corresponds to the perceptual distance between the current
image and the next image that is rotated by 0.45°. There it shows that the resulting
graph has a spike at the same angle that the car tire collapsed in Figure 7.4.

Inconsistent Rotation Speed

In addition to the collapsing images along the rotation path, we also observed that
the rotation speed is very inconsistent throughout the rotation. Near discrete rotation
vectors, every 45°, the car seems to be almost static, whereas it turns very quickly in
between. Since this is very difficult to demonstrate on paper, the rotation estimator from
the continuous rotation distance metric is used. By plotting the input angle against the
predicted angle of the rotation estimator (Figure 7.6), it shows that the predicted angle
increases quickly in some areas and slowly in others. This underlines the observation
that the rotation speed is very inconsistent. In addition to that, the graph also shows a
spike at about 70° which corresponds to the collapsed car tire, described in the previous
paragraph.

7.2 Problems with the Baseline Model 69

Figure 7.5: The perceptual distance (VGG16 [SZ14]) of the generated images along
the rotation path of Figure 7.4 from 45° to 90°. This graph shows a spike at 73°, which
corresponds to the angle at which the car tire collapsed.

Figure 7.6: The predicted angle of the rotation estimator network against the target
angle given to the generator. It shows that the rotation increases very inconsistently.
The red dotted line corresponds to an ideal rotation, in which all input angles are equal
to the predicted angles.

70 360° Rotation View Experiments

Rotation Metrics

In Table 7.1 we give an overview of the rotation metrics, from section 7.1. It shows that
the rotation FID, calculated with continuous rotation angles, outputs a slightly higher
distance compared to the traditional FID that exclusively uses the discrete rotations
from the dataset. This indicates that the image quality is worse along the rotation
paths, compared to the images at discrete k ·45° angles. This corresponds to the observed
problems where car parts collapsed during a rotation.

Experiment FID ↓ FID Rot. ↓ Rot. Accuracy ↑ Rot. Linearity ↓ Rot. Distance ↓
Baseline 4.46 5.53 90.5% 0.0118 19.87°

Table 7.1: An overview of the rotation metrics measured on the baseline model from
the previous chapter. (↓: lower is better, ↑: higher is better)

The continuous rotation distance metric outputs a distance of 19.9° for the baseline
model. This value is very high, considering that the maximum distance from any point
on the circle to the closest discrete k · 45° angle is 22.5°. We, however, hypothesize
that the actual continuous rotation distance is better than the metric suggests, since
we observed that the rotation estimation network sometimes performed very poorly.
Nevertheless, we still assume the output of this metric to be suitable for comparing the
performance between different experiments.

Summary and Experiments Overview

In conclusion, we observed that the baseline model from the previous chapter is already
able to create some sort of rotation when interpolating in between all eight discrete
one-hot rotation vectors. This rotation, however, shows several problems. It is very
inconsistent in its perceived rotation speed, the transitions around the rear and the
front of the car look very poor, and the car tires sometimes collapse in between discrete
rotations. With the goal of avoiding those problems, we propose the following three
approaches in the next sections:

• Sine / Cosine Rotation Label : Our first approach replaces the one-hot rotation
label with a more suitable two-dimensional vector that describes the position of
the camera around the car.

• Training with Continuous Rotations : The second approach uses the continuous
angles during the training to avoid any collapsing images along the rotation path.

• Perceptual Rotation Regularization: The last approach proposes a regularization
to increase the consistency of the rotation speed.

7.3 Sine / Cosine Rotation Label 71

7.3 Sine / Cosine Rotation Label

The first experiment focuses on improving the 360° view by revisiting the rotation label.
Currently the rotation is encoded as an eight-dimensional one-hot vector, where each
dimension represents a discrete 45° angle. We assume that this discrete encoding is
ill-suited in order to create a smooth 360° rotation of a car. Instead, we propose a
two-dimensional vector that describes the position of the camera with a vector on a
unit circle, as shown in Figure 7.7. Therefore, we simply encode the sine and cosine of
each angle. With this changed label type, we hypothesize that it should be easier for
the model to learn the relationships between the rotation labels, given that adjacent
rotations are closer on the unit circle, which was not the case with the one-hot encoding.
There, each spacial distance between all rotation vectors was the same. Although some
methods in the literature [Sho+21] propose to use the degree of the angle as rotation
label, it is reasonable to use the sine and cosine in order to take advantage of their
periodic characteristic.

Figure 7.7: A visualization of the new rotation label encoding, where the position of
the camera is described by the sine and cosine.

Model Adaptations

In order to train the StyleGAN with the new rotation label, we have to perform some
adaptions in the loss functions and at the output of the discriminator. This is because
we now design our discriminator to predict the current rotation of a car, in addition
to predicting whether the image is real or fake. This means that the discriminator
now receives two losses. An adversarial loss and a rotation loss. This rotation loss

72 360° Rotation View Experiments

is a regression loss, which is calculated by the squared euclidean distance between the
rotation vector of the real image rreal = (cosα, sinα) and the rotation prediction of the
discriminator Dr(x) = (ocos, osin) (Figure 7.8 (right) green line). To predict the rotation
of a given image, we equip the discriminator with a separate linear output for both the
sine and cosine (ocos, osin), in addition to its adversarial output. To balance both loss
values, a hyperparameter γ is introduced.

LDisc = Ladv + γ∥Dr(x)− rreal∥22 (7.5)

Next to the discriminator, we also adapt the generator for the new rotation label. In
addition to its adversarial loss, it now also receives a rotation loss. This loss gets
calculated by the squared Euclidean distance between the desired rotation from the
given label rfake and the rotation prediction of the discriminator Dr(G(rfake)) for the
generated image (Figure 7.8 (right) red line).

LGen = Ladv + γ∥Dr(G(rfake))− rfake∥22 (7.6)

In summary, we now train the discriminator to predict the rotation vector of the real
data, while the generator is trained to synthesize images, which produce a rotation
prediction from the discriminator that is close to the input rotation. An overview of the
changed GAN training is shown in Figure 7.8 (left).

Figure 7.8: On the left, an overview of the changed GAN training, using the sine /
cosine labels. And on the right, a visualization of the rotation loss of the generator and
discriminator. To calculate the loss as described in Equation 7.5 and Equation 7.6, the
distances are squared and then multiplied by a balancing parameter γ.

7.3 Sine / Cosine Rotation Label 73

Classification Performance of both Label Encodings

Before training the StyleGAN model with the new rotation label, we first train the
discriminator in isolation to ensure that it has no disadvantage when learning a regression
task over a classification task. To do so, we compare two experiments where we train the
discriminator as a classifier and then as a regression network. For the classifier we use
the one-hot labels and a cross-entropy loss. And for the regression network we use the
new sine / cosine label with the loss as described in section 7.3. After that, we compare
the performance of both models by calculating an accuracy metric on a separate test
set. To do so, we use the closest discrete rotation class for the regression model, since it
outputs a vector instead of a discrete class.

Figure 7.9: Visualization of the rotation prediction using the regression model with the
sine / cosine label. For each rotation class, a prediction over 1000 samples from the test
set is performed. It also shows the average distances, which is the lowest for the ’front
left’ label and the highest for the ’profile right label’.

After training the two models for a duration of one million training images, both showed
very similar performance. The regression model performed slightly better with 95.9%
accuracy compared to 94.9%. This already indicates that the model has no disadvantage
when using the sine / cosine label instead of the one-hot label. In order to validate, if the
predictions of the regression model are also close to the target vector, we measure the
average Euclidean distance between the prediction and the target vector for 1000 test
images. This is also visualized in Figure 7.9. It showed that the average distance of all
predictions is 0.06. Considering that the distance between two discrete rotation labels
is 0.77, it indicates that the training was successful. Figure 7.9 highlights that most of
the predictions are located at the correct position, while some few spread towards the

74 360° Rotation View Experiments

two neighbors or the opposite side. While the ’front left’ and ’front right’ labels have
the lowest average distance of 0.012 and 0.033, the ’profile left’ and ’profile right’ labels
have the highest. They scored the largest average distance to the target rotation with
0.061 and 0.092.

Given that both models perform very similarly to each other in terms of accuracy, it
motivates the use of the new rotation label for the StyleGAN training. This is for two
reasons. The first reason is that the model might learn the semantics and the relation-
ships of the rotation labels easier, when it is already provided with an arrangement in
a two dimensional space. In this arrangement, the adjacent rotation labels are close
to each other, whereas all distances of the eight-dimensional one-hot vectors are equal.
The second reason is that the new label encoding facilitates the synthesis of continu-
ous rotation angles, since they can simply be calculated by the sine and cosine of any
given angle, instead of having to interpolate in between two of the eight one-hot vectors.
This especially facilitates the design and implementation of further modifications to the
model.
In the next section, we will train the conditional StyleGAN with the sine / cosine label.

Training with Sine / Cosine Labels

After training the StyleGAN with the sine / cosine labels for 5 million training images, it
shows that the model is able to successfully learn the semantics of the rotation using the
sine / cosine labels. Both the rotation distances of the generator and the discriminator
decrease over the course of the training, as shown in Figure 7.10 (left). This indicates that
the discriminator learned to correctly predict the rotation angle of the training images
and the generator was able to produce images at the correct angles. To demonstrate
this, we generate an image at every discrete k · 45° rotation angle in Figure 7.10 (right).

Figure 7.10: Left, shows the Euclidean rotation distance of the generator and the
discriminator during training. The rotation loss is calculated with the squared rotation
distance, multiplied by 10. Right, shows example images from all discrete rotation
angles.

7.3 Sine / Cosine Rotation Label 75

Rotation Accuracy and FID

Next to the successful examples from Figure 7.10, it also shows that the rotation ac-
curacy, measured by a pre-trained classification network, has significantly increased.
While the baseline model only scored an average rotation accuracy of 90.5% the new
model with the sine / cosine label scored 99.7%. A comparison of the accuracies for
each rotation class is shown in Figure 7.2. It demonstrates that no rotation class scores
an accuracy worse than 99%, while in the previous baseline model some rotations only
reach 87%. On the downside, however, the FID metric scores considerably worse than
in the baseline model. As shown in Figure 7.11, the baseline scored a lowest FID of 4.46,
whereas the new training scored a much higher FID of 7.27. We hypothesize that there is
a trade off between image quality and rotation accuracy, controlled by the loss balancing
parameter γ. Given that the FID is worse, while at the same time the discrete rotation
accuracy is at 99%, it suggests that a lower magnitude for the rotation loss weight might
benefit the image quality. This, however, was tested in prior experiments, which showed
a significantly worse rotation results. Although those experiments, initially, showed very
good FID values and good rotation accuracy, at some point during the training the gen-
erators only focused on the adversarial task. Then, the adversarial loss of the generator
dominated the rotation loss, which caused the rotation loss to increase again. This in
turn reduced the accuracy of the rotation label and also caused very poor looking rota-
tion animations. In order to avoid such behavior in later training stages, we decided to
increase the rotation loss weight from 1.0 to 10.0. With this magnitude, it is ensured
that the adversarial loss does not dominate the rotation loss, even though it increases
the FID.

Figure 7.11: FID over the training of the
baseline model with the one-hot rotation
labels and the new model with the sine /
cosine label.

Rotation One-Hot Sin / Cos
Front Center 88.5% 99.5%
Front Left 94.7% 100.0%
Profile Left 86.9% 99.3%
Rear Left 87.2% 99.2%
Rear Center 95.5% 100.0%
Rear Right 89.4% 100.0%
Profile Right 90.4% 99.9%
Front Right 91.4% 99.3%
Average 90.5% 99.7%

Table 7.2: Rotation accuracies compared
to the baseline model with one-hot rotation
labels. It is calculated with 10k generated
images at random 45° angles.

76 360° Rotation View Experiments

Rotation Improvements

The most noticeable difference between the baseline model and the new model with the
sine / cosine label appears when synthesizing a full rotation. With the baseline model,
those rotations showed three major problems. Firstly, the transitions from the front or
rear view to the side of the car looked very poorly. Secondly, the car tire collapsed at
some positions. And at last, the overall rotation speed was very inconsistent. Although,
we still observe some rotations in which the car tire collapses, the others problems
significantly improved. This can be demonstrated by synthesizing a rotation from the
front view to the side view of the car, as shown in Figure 7.12. While in the baseline
model, the rotations consistently collapsed at that rotation angle, it now smoothly turns
using the sine / cosine labels. This indicates that the new label helps the model to find
a better relationship between neighboring rotations classes.

Figure 7.12: Two comparable rotation sequences of the baseline model and the new
model from 12° to 42°. It shows that the car slightly collapses at 24° when using the
baseline model and smoothly rotates with the new model.

The improved rotation is also underlined by the rotation linearity metric, which measures
the average standard deviation of the perceptual image distances along a rotation path.
While the metric measured a standard deviation of 0.0118 for the baseline model, the
new model only measures 0.0069. This result is more than 40% lower and indicates that
the perceptual rotation speed is much more consistent. An example for this can again
be visualized by plotting the input angle against the predicted angle of the continuous
rotation estimator. This is shown in Figure 7.13, where two similar car rotations from the
baseline model and the new model are compared. It shows that the predicted rotation
angles of the new model are more linear and that the angles increase more consistently.
This observation is also underlined by the continuous rotation distance metric. There
the baseline model achieved a median distance of 19.9°, whereas the new model only
measures 16.4°.

7.3 Sine / Cosine Rotation Label 77

Figure 7.13: The graph plots the input angle of the generator against the continuous
angle prediction from the rotation estimation network. Here, two similar rotations from
the training with one-hot labels and sine / cosine labels are compared.

Rotation Problems

Although all the above rotation metrics suggest that the rotation is better when using
the sine / cosine labels, some images along the rotation paths show that the car tire still
collapses at some points during the rotation. An example for this is demonstrated in
Figure 7.14. This shows that the model still struggles to create smooth rotations with 3D
properties. On the upside, however, the difference between the FID calculated on discrete
rotation labels and the FID calculated on continuous rotation angles is considerably
smaller when using the sine / cosine label. For the baseline model the FID increases
from 4.46 to 5.53, when using continuous rotation angles, while in the new model the
FID only increases from 7.27 to 7.46. Although both FID values are higher with the
new rotation label, it might still might hint that the images are less prone to collapse in
between discrete rotations. This is because we assume that any collapsing image should
increase the FID marginally. Since, however, the FID only increases by 0.19 using
the sine / cosine label, we hypothesize that fewer images collapse during a rotation,
compared to the baseline model.

Figure 7.14: An example rotation sequence, where the car tire collapses at 121° similar
to previous experiments.

78 360° Rotation View Experiments

Summary

In summary, this experiment showed that the training with the sine / cosine labels
significantly increase the quality and consistency of the rotation. This was shown in every
rotation metric, apart from both FID metrics. However, given that both FID values
are very close to each other, we hypothesize that this also indicates an improvement
compared to the baseline model, in which the two FID values were further apart.
Although the FID might improve even further if we lower the loss balancing parameter
for the rotation loss, we do not modify this value for the rest of the thesis.

Experiment FID ↓ FID Rot. ↓ Rot. Accuracy ↑ Rot. Linearity ↓ Rot. Distance ↓
One-Hot 4.46 5.53 90.5% 0.0118 19.9°
Sin / Cos 7.27 7.46 99.7% 0.0069 16.4°

Table 7.3: An overview of the rotation metrics compared between the experiments
using the one-hot labels and the sine / cosine labels.

Due to the overall success of this experiment, we perform all of the following rotation
experiments with the sine / cosine rotation label as well. Therefore, this experiment can
be considered as a second baseline model for this thesis. We also performed all of the
following experiments using the one-hot rotation label, however, since they all showed
consistently worse results, they are not analyzed in the following sections.

7.4 Training with Continuous Rotations

In the next experiment we target the collapsing images during a rotation. Therefore,
we synthesize car images at continuous angles already during the training. By doing
so, we expect that the image quality along the rotation paths improves, given that the
generator now also receives a feedback for those images. With this approach we assume
that especially those images, which showed a collapsing car tire, should be penalized
the most, as they likely produce a high loss in the discriminator. This in turn, could
improve the rotation quality significantly.
The experiment about the label randomization in subsection 5.7.1 underlined that it
can be very dangerous to provide the generator with different labels other than from
the dataset. There it showed that the images collapsed as soon as the images were
synthesized by label combinations that did not exist in the dataset. This is also a
problem for this experiment, since the training data only provides discrete rotation
labels. In order to avoid a situation, where the labels have a very unbalanced difficulty
for the generator, we only provide few continuous rotation angles to the generator, while
the rest of the rotations are still drawn from the dataset. For the following experiment,
we test 20% and 40% continuous angles.
Since the discriminator never receives any real training examples with continuous angles,
we expect that the rotation loss from section 7.3 does not produce any meaningful

7.4 Training with Continuous Rotations 79

rotation feedback for the continuous images in the generator. Therefore, we propose
two loss variants in the following. In the first variant, the rotation loss is ignored for
the continuous angles and in the second variant, we train the discriminator to also learn
the continuous rotation angles. In the following subsections, we analyze both variants
separately.

7.4.1 Ignoring the Continuous Rotation Loss

As described in the previous experiment, both the generator and the discriminator re-
ceive an additional rotation loss next to the adversarial loss, when using the sine / cosine
labels. For the discriminator, the rotation loss is calculated by the Euclidean distance
between the predicted rotation vector and the rotation vector of the training data and
for the generator the rotation loss is calculated by the Euclidean distance between the
target rotation vector and the predicted rotation vector from the discriminator. Since in
this experiment the generator now also produces images at continuous rotation angles,
we have to adapt the loss function. This is because the discriminator only receives real
training samples at discrete k · 45° angles during the training. If the discriminator now
has to predict the continuous angle of a generated car, we do not expected it to produce
a meaningful output. Instead, it will likely predict a discrete k · 45° angle, like in the
training examples. This feedback, however, would not be very helpful for the generator.
This is why, in this approach, the predictions for the continuous rotations are simply
ignored by the generator, when it synthesizes a car at a continuous angle. This means,
that the generator only receives an adversarial loss for images generated at continuous
angles. With this approach we hypothesize, that the generator should create a better
rotation, as it gets penalized if any image within a rotation looks unrealistic. This could
then avoid the collapsing tires that were observed in the previous experiments.
In the following two sections, we first evaluate an experiment with 20% continuous ro-
tation angles is evaluated and then with 40%.

Training Results with 20% Continuous Angles

After training the first experiment, in which 20% of the input labels for the generator
are replaced with random continuous angles, the model simultaneously showed very bad,
but also very promising results. When synthesizing a full 360° rotation with the model,
the transitions look very good, in between 0° to 180°, however, start to look worse
between 225° and 270°. This observation showed to be consistent for all synthesized
rotations with this model. To visualize this, two rotation sequences are shown in the
following. Figure 7.15 shows a rotation from 0° to 91°, which looks very good. Instead
of quickly jumping from one position to the next, like it was observed in the previous
results, the car smoothly turns from one angle to the next. Even though, the rotation
from 0° to 7° is especially difficult for the model, given that it has to add car parts,
such as the tires, that are only visible from the side of the car, it looks very realistic.

80 360° Rotation View Experiments

This good rotation quality was observed for almost all generated images. In addition to
that, the car tires do not collapse at any point during the first half of the rotation. This
is a major improvement to the last experiments in which the tires collapsed for almost
every rotation. This hints that the continuous rotation angles help the model to remove
unrealistic images along the rotation path.

Figure 7.15: An example rotation from 0° to 91°, demonstrating the good rotation
quality when training with 20% continuous rotation angles.

Figure 7.16, on the other hand, shows a rotation from 236° to 266°, which looks very
poorly. There, the car collapses for a short interval between 230° and 254°. It shows
that the rear left tire transitions to the rear right tire, which causes the front left tire to
quickly disappear. This makes the rotation look very unrealistic.

Figure 7.16: A bad rotation example between 236° to 266°. Here the rear left tire
transitions to the rear right tire, causing the car to collapse for a short interval. The
orange line is placed at the same position for all images, highlighting that the position
of the car tire is fixed.

After we tested a large number of rotations by hand, it shows that this behavior is
seen in every rotation generated by this model. This indicates that the model favors an
alternative transition that does not correspond with the 3D properties of a car. Given
that this effect was already visible at the early training stages of the model, it underlines
that the generator has learned this incorrect transition right from the beginning. As the
generator initially produces images with low quality, it is possible that this transition
was not penalized enough by the discriminator at the start of the training. Although,
in later training stages, those bad images should produce a higher loss, it might be too
late for the generator to correct those transitions.
This bad rotation is also reflected in the results of the rotation metrics, shown in Ta-
ble 7.4. There it shows that every rotation metric, especially the FID with continuous
angles and the rotation linearity, has decreased compared to the baseline model from the
previous section. Only the traditional FID metric has improved. This is likely because
of the reduced rotation loss, since this loss is now being ignored for 20% of the fake
images. This allows the model to set more of its focus on the adversarial task.

7.4 Training with Continuous Rotations 81

Experiment FID ↓ FID Rot. ↓ Rot. Accuracy ↑ Rot. Linearity ↓ Rot. Distance ↓
Baseline Sin / Cos 7.27 7.46 99.7% 0.0069 16.4°
20% Continuous Rot. (ignore loss) 6.65 9.53 98.9% 0.0113 18.0°

Table 7.4: An overview of the rotation metrics compared to the baseline model using
the sine / cosine labels.

Even though the rotation of this model looks very bad for one section of the rotation,
it still shows considerably better transitions than the baseline model for the rest of the
rotation. One simple workaround for this problem would be to exclusively use the first
half of the rotation and mirror it for the second. This, however, would be a disappointing
solution, given that all other features such as the image background would be mirrored
as well. And especially after we observed that the rotation improved for the first half
of the rotation, it motivates us to find a solution where the second half works as well.
Therefore, we perform a second experiment, in which 40% instead of 20% of the the
labels have a continuous rotation. With this increased proportion of continuous angles,
we hypothesize that the rotation on both sides look better, given that twice as many
continuous angles are sampled during the training. This could penalize the incorrect
transitions at the beginning of the training even more.

Training Results with 40% Continuous Angles

Contrary to the expectations, the results of the training with 40% continuous angles
showed very poor results compared to the experiment with 20%. Instead of enforcing
the model to improve the quality for the second half of the rotation as well, the images
now fully collapse around 0° and 180°. An example for this is shown in Figure 7.17.

Figure 7.17: An example rotation centered at 0° and 180°, highlighting the collapsing
images, when the car makes a transition to the side.

This observation is similar to the result of the soft label randomization experiment from
subsection 5.7.1. There, we slightly randomized the labels for the generator during the
training, which caused the synthesized images to collapse as soon as a class of one label
was changed. Back then, this was explained by an unbalance between the difficulty

82 360° Rotation View Experiments

between real labels from the dataset and randomized labels. This is likely to be the case
for this experiment as well. However, in this case, the difficult labels are the regions
near the ’front center’ and the ’rear center’ view of the car. This makes sense as the
appearance of the vehicle changes the most in those regions.

Summary

Overall, the last two experiments have shown that rotation can generally be improved
with this method, although it is very difficult to find a suitable proportion between
discrete and continuous angles. If too many continuous angles are used during the
training, the images start to collapse at the front and the rear view and if too few are
used, the generator might not be penalized enough for creating poor looking transitions.
Instead of testing further proportions, an alternative approach is tested in the following.

7.4.2 Cooperative Continuous Rotation Loss

The second approach for handling the continuous rotation loss is inspired by a semi-
supervised learning algorithm. The main idea of this approach is to teach the continuous
rotations to the discriminator by simultaneously training it with the discrete labels from
the training data but also with synthesized data from the generator. This means that
the discriminator learns the discrete rotation angles from the training data and the
continuous rotation angles from the generator. This way, the generator can also receive
feedback for the continuous rotation angles. With this approach, both networks have to
agree on a representation of a car at a continuous angle, without ever observing such a
training example from the real data. With this experiment, it is either expected that
the continuous rotations look good and consistent, or very bad. This could be the case,
if both models agree on a representation that does not correspond to a 3D rotation. On
the other hand, it might as well be very good, considering that the generator already
produced 3D-like transformations only using discrete labels. The generator could then
receive useful feedback for the continuous rotation views, which would help to generate
more consistent rotation angles. With this approach, the resulting loss function of the
discriminator looks as follows:

LDisc = Ladv + γ∥Dr(x)− αreal∥22 + γ∥Dr(G(z))− αinput∥22 (7.7)

Here, Dr(x) and Dr(G(z)) are the angle predictions of the discriminator for the real and
the fake images, respectively. γ is the balancing weight between the adversarial loss and
the rotation loss. Although this value can also be different for both rotation losses, we
chose it to be the same for both rotation losses.
Like in the previous experiment, we first test 20% continuous angles and then 40%.

7.4 Training with Continuous Rotations 83

Training Results with 20% Continuous Angles

Other than in the last two experiment, the cooperative approach shows very good results.
After testing a large number of rotations, it showed that the problem from previous
experiments, where the car tire collapsed, got completely removed. This makes the
rotations look much more realistic compared to all previous models. An example for
this is shown in Figure 7.18. It shows that none of the images during the rotation
collapse.

Figure 7.18: An example rotation of the model with the cooperative rotation loss with
20% continuous rotation angles during the training. The rotation demonstrates that
none of the images collapse during the entire rotation.

This rotation improvement is also reflected in the output of the rotation metrics (Ta-
ble 7.5). It shows that especially both FID values and the continuous rotation distance
improved. This underlines that the images are less likely to collapse and that the pre-
dicted angles are closer to the target angles.

Experiment FID ↓ FID Rot. ↓ Rot. Accuracy ↑ Rot. Linearity ↓ Rot. Distance ↓
Baseline Sin / Cos 7.27 7.46 99.7% 0.0069 16.4°
20% Continuous Rot. (coop) 5.70 6.76 98.5% 0.0100 15,4°

Table 7.5: An overview of the rotation metrics compared to the baseline model using
the sine / cosine labels. It shows that especially the FID results and the continuous
rotation distance improved.

On the downside, however, the rotation linearity significantly increased by about 60%
compared to the baseline model. This indicates that the rotation speed is much more

84 360° Rotation View Experiments

inconsistent using the cooperative loss formulation. One possible reason for this can be
seen in the synthesized rotations. When rotating from the front to the side view, as
demonstrated in Figure 7.19, the side of the car suddenly appears at around 21°. As this
effect was also found in many other synthesized rotations, it could explain the increased
rotation linearity.

Figure 7.19: Two example rotations, in which the side of the car suddenly appears
when interpolating from the front to the side. The orange circles highlight the side of
the car at 21°, which was not visible at 20°.

Although this effect mitigates the realism of the rotation, we still consider this experi-
ment as most successful so far. This is because, for the first time none of the car parts
collapsed during the rotations. For that reason, we repeat this experiment with a higher
percentage of continuous angles. Instead of 20%, we now test 40% in the following
section.

Training Results with 40% Continuous Angles

After training the same model as before with 40% instead of 20% continuous angles, the
results initially looked very similar. In both experiments, no collapsing car tires were
found but the rotation linearity increased. On further examination, however, it shows
that especially the ’front center’ view sometimes looks very poorly. An example for this
is shown in Figure 7.20. There the image at 0° shows an angle of about 340°. This causes
the car to skip the ’front center’ view and directly fade into the front left view. This
creates unrealistic images that display both sides of the car simultaneously, as shown in
Figure 7.20 at 5° or 10°.

Figure 7.20: An example rotation around the front view of the car, showing that ’front
center’ view is skipped.

7.4 Training with Continuous Rotations 85

This problem can especially be highlighted by the rotation accuracy metric, as shown
in Table 7.6. There, the accuracy for the ’front center’ view is only at 81.5%, while it
was 99.5% for the baseline model. This hints that this problem occurs in about 20% of
the synthesized rotations. Next to the ’front center’ view, also the accuracy for the ’rear
center’ view has decreased. At the rear, however, no significant artifacts were found
after synthesizing numerous rotations by hand.

Rotation Baseline Sin / Cos Cooperative Loss 20% Cooperative Loss 40%
Front Center 99.5 % 91.8% 81.5%
Front Left 100 % 100% 100%
Profile Left 99.3 % 100% 99.6%
Rear Left 99.2 % 100% 99.7%
Rear Center 100 % 96.7% 96.3%
Rear Right 100 % 100% 99.7%
Profile Right 99.9 % 100% 100%
Front Right 99.3 % 100% 100%
Average 99.7 % 98.5% 97.0%

Table 7.6: An overview of the rotation accuracies for each class compared to the baseline
model using the sine / cosine labels. It underlines that the ’front center’ and ’rear center’
views perform worse with increasing continuous rotation angles.

Table 7.6 also shows that in the previous experiment with only 20% continuous angles,
the accuracy for the front center view also decreased to 91.8%. This indicates that the
same effect might also be found there. However, after further testing with the previous
model, it shows that this effect is not found. Instead, it is sometimes observed that the
rotation is slightly shifted. This means that the car shows a small rotation to either
side at the input angle 0°, while the actual ’front center’ view is located at about ±10°.
An example for this is shown in Figure 7.21, where the car is slightly rotated at 0°,
while the actual ’front center’ view is found at 354°. However, since the front view is
not skipped like in current experiment, the rotations from the previous experiment with
20% continuous angles look far better.

Figure 7.21: An example rotation, generated by the previous model with 20% contin-
uous angles, where the car is slightly rotated at 0° and the actual ’front center’ view is
found at 354°.

86 360° Rotation View Experiments

Summary

Altogether it showed that the training with the cooperative rotation loss significantly
improved the rotation, given that none of the car tires collapsed at any point. This
makes the rotation look far more realistic compared to the previous experiments. The
only drawbacks of this experiment are that the quality of the front and rear view of the
car slightly decreases and that the rotation linearity metric performs worse. In order
to encounter this problem, the next experiment proposes a regularization technique to
stabilize the rotation speed.

7.5 Perceptual Rotation Regularization

The next experiment aims to improve the rotation linearity, by adding a regulariza-
tion similar to the path length regularization from the StyleGAN paper [Kar+19]. As
described in subsection 2.2.3, the path length regularization is designed to align the
distances in the latent space with the magnitude of change in the output images. This
is done, since it is expected that linear interpolations in the latent space correspond to
smoother transitions in the output images [Kar+19], if a fixed step in the latent space
causes a fixed change in the output image.
In the StyleGAN, this is implemented by calculating the length of the gradient from a
modified image to its original latent vector w, using backpropagation. This length is
then compared to its own moving average from all previous iterations. This way, the
regularization penalizes the model, if the length of the gradient vector changes, although
the corresponding image is modified by a fixed magnitude. The regularization can be
formulated with the following expression:

RegG = Ew,Inoise∼N (0,1) (||∇w(G(w)Inoise)||2 − A)2 (7.8)

Here, Inoise denotes the multiplied noise image that is used to modify the output image
by a fixed magnitude and A is the moving average of the length of the gradients.
In this experiment we test, if a similar regularization technique can be applied to
smoothen the rotation interpolation paths instead of arbitrary latent space paths. There-
fore, we measure the perceptual distance with the VGG16 [SZ14] model when rotating
the car by a fixed angle. This distance is then compared to its moving average to penal-
ize the model, if the perceptual distance is inconsistent throughout the rotation. This
can be formulated as follows:

RegG = Ez,α∼[0,360] (||VGG(G(z, α))− VGG(G(z, α + ϕ))||2 − A)2 (7.9)

Here, A is the moving average of all previous distances and ϕ is the fixed constant angle
that is added to the random angle α to rotate the car. In order to balance the rotation

7.5 Perceptual Rotation Regularization 87

loss with the regularization, a weight is introduced that multiplies the regularization
result before it gets added to the loss. For the following experiments we set this weight
to 10 and 20, while ϕ is set to 4.5°. Unlike the previous experiments, we evaluate the
results of both experiments simultaneously.

Training Results

After training the StyleGAN with the perceptual rotation regularization, it shows the
following penalty graphs (Figure 7.22). At the beginning, both penalties are very low, as
the images show only very little variation. Then, after about 200k training images both
penalty terms slowly start to increase. At this point the generator starts to produce more
variation. After about one million training images both graphs reach their maximum
and slowly decrease from this point onwards. It shows that in the training, which uses
twice the regularization weight, the graph decreases slightly faster.

Figure 7.22: The penalty graph of the perceptual rotation regularization during the
training. It shows that the experiment with the higher regularization weight decreases
slightly faster.

In order to validate if the regularization improves the rotation, we measure all four
rotation metrics, as shown in Table 7.7. Those especially underline that the rotation
linearity decreased. This indicates that the helped to reduce the perceptual distance
between two images along a rotation path. This in turn implies that the rotations are
smoother.

Experiment FID ↓ FID Rot. ↓ Rot. Accuracy ↑ Rot. Linearity ↓ Rot. Distance ↓
Baseline Sin / Cos 7.27 7.46 99.7% 0.0069 16.4°
Perceptual Rot. Reg. (weight=10) 6.84 7.49 99.4% 0.0047 16,1°
Perceptual Rot. Reg. (weight=20) 6.67 8.17 99.6% 0.0044 15,5°

Table 7.7: An overview of the rotation metrics compared to the baseline model using
the sine / cosine labels.

88 360° Rotation View Experiments

To visualize this with an example, Figure 7.23 shows the incremental perceptual distance
for three comparable rotations of all three models. Therefore, each value calculates the
distance of the current image to the next image and adds it to all previous distances.
By doing so, the gradient of the resulting curves describes the magnitude of change at
the current angle. As a result, it shows that the rotations, synthesized with the models
that use the regularization, show a lower and also more consistent curve compared to
the baseline model. This highlights that the images change a lot less during a rotation
when using the regularization.

Figure 7.23: An incremental perceptual distance graph, for three comparable rotations
using the rotation regularization with different regularization weights. It shows that
with increasing regularization weight, the perceptual distances become smaller and more
linear.

Next to the rotation linearity metric, also the continuous rotation distance improved.
This indicates as well that the rotations show better results when using the regular-
ization. On the downside, however, the FID, measured at continuous angles increased
considerably when using the regularization with a weight of 20 instead of 10. A rea-
son for this can also be found when generating some rotations by hand. It then shows
that the images often collapse during a rotation at about 100°, as demonstrated in Fig-
ure 7.24. This hints that the regularization actually harms the quality of the rotation
if it is set too high. An explanation for this might be that in an ideal 3D rotation of
a car, the perceptual distances are also not consistent throughout the whole rotation.
Instead, it is expected that the rotations at k · 90° angles should have a lower perceptual
distance than the rotations at 45° + k · 90° angles. Since the regularization aims to
equalize all perceptual distances irrespectively to the current angle, it might cause very
bad transitions at angles at which the perceptual distance of a real 3D car should be
high.

7.6 Combining the Components 89

Figure 7.24: A bad example for a rotation from 94° to 110°, showing that the car fades
from one rotation to the next instead of turning around.

Summary

Altogether, it showed that the perceptual rotation regularization generally helps the
model to create an overall smoother rotation. This was shown by the improved rotation
linearity and the smaller continuous rotation distance. If, however, the regularization
weight is set too high, it causes very bad transitions during a rotation. This might be
because the model then steers away from a 3D rotation and instead creates a transition
in which the perceptual distances are smaller. For that reason, we will only use the
regularization with a weight of 10 for the next experiment, in which we combine the
successful components of all rotation experiment in one model.

7.6 Combining the Components

In the next experiment, we test how well the proposed modifications from the last sec-
tions can be combined. To do so, we perform an experiment using the three modifications
that achieved the best performance increases. Those are:

• The sine / cosine label from section 7.3, which especially improved the rotations
around the front and the rear of a car.

• The training with 20% continuous rotation angles with a cooperative rotation loss
from section 7.4 that removed the collapsing car tires during a rotation, however
at the cost of the consistent rotation speed.

• And a perceptual rotation regularization with a weight of 10 from section 7.5,
which improved the rotation speed.

90 360° Rotation View Experiments

Training Results

After training the model with all three successful modifications combined, it showed
very promising results. As demonstrated in Table 7.8, all rotation metrics, apart from
the rotation accuracy improved compared to the baseline model. This already indicates
that the resulting rotations look considerably better than in the previous models. It
especially shows that the continuous rotation distance and the FID at continuous angles
is lower than all previous experiments. This hints that the continuous angles are closer
to the input angles and that the rotations are less prone to collapse.

Experiment FID ↓ FID Rot. ↓ Rot. Accuracy ↑ Rot. Linearity ↓ Rot. Distance ↓
Baseline Sin / Cos 7.27 7.46 99.7% 0.0069 16.4°
20% Continuous Rot. (cooperative) 5.70 6.76 98.5% 0.0100 15.4°
Perceptual Rot. Reg. (weight=10) 6.84 7.49 99.4% 0.0047 16,1°
Combine 5.8 6.20 98.8% 0.0057 14.4°

Table 7.8: An overview of the rotation metrics compared to the baseline model using
the sine / cosine labels.

The good result from the rotation metrics also correlates with the perceived rotation
quality when synthesizing some examples per hand. Figure 7.25, for instance, shows a
good example of a rotation from 0° to 170°, in which the car does not collapse at any
point during the rotation.

Figure 7.25: An example rotation from 0° to 170°, underlining the improved rotation
quality.

Although this rotation looks considerably better than all previous results, it still shows
some small problems when rotating towards the rear view of the car. It was sometimes
observed that the front tire gets converted into the rear tire, as shown in Figure 7.26.
This seems like a logical solution for the network, given that it transitions the left most
tire from one perspective to the left most tire of another perspective. However, by doing
so, it requires the rear tire from the side view to vanish, which in turn breaks the 3D
properties of the car. This was especially observed with cars that were equipped with a
large exhaust pipes, like in Figure 7.26. There it showed that the former rear left tire
often got converted into the left exhaust pipe.

7.7 Summary 91

Figure 7.26: An example rotation from 185° to 189°, in which the rear left tire gets
converted to the left exhaust pipe.

Summary

In summary, it showed that the successful components from previous sections also work
well in combination. This was shown with the FID metric that uses continuous angles
and with the continuous rotation distance metric. Both scored considerably better re-
sults than previous experiments. In addition to that, we also observed a good rotation
quality when inspecting some example rotations by hand. Although few transitions
around the rear of the car still caused problems, the general rotation quality improved
a lot compared to all previous results.

7.7 Summary

In this chapter, we successfully synthesized a full 360° rotation of a car only using the
eight discrete rotation labels from the car dataset. This was mainly achieved by the
changed rotation label that allowed us to encode relationships between each rotation
class. As a result, we observed considerably smother and especially more realistic tran-
sitions in between each 45° angle. In addition to that, we also proposed a semi-supervised
loss function that enables to learn continuous rotations in the discriminator using the
generated images as additional training data. This helped to reduce collapsing images
during a rotation, as the generator and the discriminator cooperatively learned all con-
tinuous viewpoints around cars. This modification, however, came at the cost of a worse
rotation linearity. To encounter this, we also proposed a regularization technique that
produced considerably smother transitions. At last, we also combined all three compo-
nents in one model, which resulted in an overall highest rotation quality. In order to
test how well those modifications scale with increased image resolution, we will train
the model from section 7.6 again at a resolution of 512 × 512 in the next chapter. In
addition to that, we will also apply the modifications from chapter 5 to increase the
image quality especially for unseen label combinations.

8 High Resolution Experiments

In this chapter, we will test whether we can further improve the rotation quality by
increasing the image resolution. Tod do so, we will train the final model from chapter 7
again at an image resolution of 512×512 pixels instead of 256×256. Furthermore, we will
also add some of the components from chapter 5 to take advantage of the faster model
convergence and especially improve the image quality for unseen label combinations.
In addition, we will increase the training duration from 5 million training images to
10 million, since the images at higher resolutions show considerably more detail, which
might take longer to learn.

8.1 Combination Model Configuration

Instead of simply combining all successful components from chapter 7 and chapter 5,
we question whether any component from chapter 5 could possibly harm the rotation
quality. Consequently, we analyze each of the three conditional components that were
used in the last experiment of chapter 5.

Label Dropout

The label dropout component mostly improved the general image quality for unseen
label combinations. This was achieved by randomly removing some of the labels during
the training. Due to its successful results, it should also be part of this combination
experiment. Since, however, the removed rotation labels could affect the rotation loss,
we decided to randomly remove all labels apart from the rotation label. This way, we
make sure that the rotation components perform as similar as possible to the previous
experiment.

Separate Label Mapping

Similar to the label dropout, we showed that the separate label mapping component
also brings some image quality improvements when synthesizing with unseen label com-
binations. In addition, it also slightly reduced the entanglement between the labels.
For both reasons it is desirable that this component is also used in this combination

93

94 High Resolution Experiments

experiment. However, after inspecting some rotation sequences of this model, it showed
that the transitions between the discrete rotations looked very poor. An example for
this is shown in Figure 8.1 (right). There, it demonstrates that the whole transition
from one discrete rotation to the next gets squeezed into a very small interval, at which
the car collapses. This observation can also be made with the rotation linearity metric.
This metric scores a standard deviation of 0.0181, which is considerably higher than the
result of the baseline model that only scored 0.0118. This indicates that the rotation
sequence looks very inconsistent. Another way to visualize this is shown in the incre-
mental perceptual distance graph (Figure 8.1 left). This graph adds up all perceptual
changes during the rotation. It underlines that the perceptual distance, measured by
a VGG16 model, increases very inconsistently, compared to the baseline model. Since
this could also harm the rotation quality for the following combination experiment, we
decided to completely remove the separate mapping component.

Figure 8.1: A demonstration of the inconsistent rotation speed, when synthesizing a
rotation with the separate mapping component. The graph (left) shows the incremental
perceptual rotation distance and the images (right) show two example rotations between
70° and 82°.

Label Information in the Discriminator

The last conditional component is the additional label information in the discriminator.
This component showed to speed up the convergence of the FID considerably during the
training. This led to an overall higher image quality. Therefore, it should be used in the
combination experiment as well. However, since the component provides the rotation
labels directly to the discriminator, which also has to predict this angle using the sine
/ cosine labels, we decided to remove the rotation label for this component. Otherwise
it might bring the risk of the discriminator relying on the rotation input to predict
the rotation angle. In such a situation, the generator would not be able to learn the
rotations, as it does not receive any rotation feedback based on the generated images.

8.2 Training Results 95

Training Configuration

With those modifications, the configuration of the combination experiment can be sum-
marized as follows:

• 25% label dropout (without removing the rotation label) from subsection 5.7.2

• Label information in the discriminator (apart from the rotation label) from sec-
tion 5.9

• Sine / cosine label from section 7.3

• 20% continuous rotation angles with a cooperative rotation loss from section 7.4

• Perceptual rotation regularization with a weight of 10.0 from section 7.5

8.2 Training Results

Since we changed the image resolution and training length, it is not reasonable to com-
pare the metric results from the following experiment with the previous results. There-
fore, we train the baseline model from chapter 5 at the increased resolution. In the
following we will first compare both models with all metrics from this thesis and then
focus on a qualitative analysis of the rotation improvements that come with the increased
resolution.

Metric Results

In Table 8.1, we summarize the rotation metrics and conditional metrics of both models
that were trained at an increased resolution.

Experiment Baseline 5122 Combination 5122

FID ↓ 2.28 3.49
FID Continuous Rotation ↓ 3.34 (+1.06) 3.61 (+0.12)
Rotation Accuracy ↑ 92.0% 97.0%
Rotation Linearity ↓ 0.0141 0.0093
Continuous Rotation Distance ↓ 17.6° 16.8°
FID Randomized Labels ↓ 8.02 (+5.74) 8.33 (+4.84)
Conditional Accuracy ↑ 85.2% 82.6%
Label Entanglement ↓ 26.0 27.3

Table 8.1: An overview of the rotation metrics measured on the baseline model from
the previous chapter. The second value of the FID metrics denotes the difference to the
traditional FID result. (↓: lower is better, ↑: higher is better)

96 High Resolution Experiments

Generally, it shows that the baseline model performs better for image quality and condi-
tional accuracy, while the combination model performs better for rotation quality. This
is expected, as we already observed similar results in section 7.3. There, we explained
this observation with the high value of the rotation loss balancing parameter that forces
the model to focus more on rotation quality instead of image quality. This is likely the
case for this combination experiment as well. Although all three FID results are higher
for the combination model, we observe smaller increases between the traditional FID
that uses labels from the dataset and both FID metrics that use modified labels. This
indicates a more consistent image quality for randomized label combinations but also
along the rotation paths. This correlates with the observed rotation quality shown in
Figure 8.2, where we synthesize a rotation with the high resolution baseline model. It
shows that the transitions between the discrete rotation angles look very poor. As this
observation proved to be consistent for all rotations, we will, from now on, only focus on
the rotation quality of the combination model and compare them with the final model
from chapter 7.

Figure 8.2: Rotation examples from the high resolution baseline model. It shows very
bad transitions between the discrete rotations, while the car is also rotated to the left
at 0°. Both sequences show a rotation from 0° to 50°.

Rotation Improvements

After synthesizing a rotation with the high resolution combination model, the transitions
look very good compared to all previous models at low resolutions. Similar to the final
model from chapter 7, the rotations look very consistent and do not show any collapsing
tires for the whole rotation. In addition, it shows that some of the problems from previous
models have been reduced. Back then (in section 7.6), for instance, we observed that the
rear car tire sometimes converted into exhaust pipes when rotating form the side view
to the rear view of a car. This effect got completely removed using the higher resolution.
An example for this is shown in Figure 8.3, which demonstrates that the rear tire slowly
disappears instead of being converted into another car part. This makes the rotation
look considerably more realistic. A possible explanation for this might be that the effect
still exists using the increased resolution, however, at a much smaller level of detail.
Therefore, this effect is much less visible and mostly affects smaller car parts.

8.2 Training Results 97

Figure 8.3: A comparison of a rotation at the rear of the car, generated at low resolution
and high resolution. The circle highlights the tire / exhaust pipe.

Another rotation improvement that comes with the higher resolution can be found when
tracking the position of small textures, such as the manufacturer logo, during a rotation.
There, it often showed that the logo is stuck at a specific position when training with
the low resolution. An example for this is demonstrated in Figure 8.4. There it shows
that the rings of the Audi logo are stuck in place. During the rotation, the model then
appends new rings at one side, while the old rings disappear at the opposite side. This is
no longer the case when training at a higher resolution. There, all four rings move along
with the car. This problem is also often referred to as ”texture sticking” in literature
[Cha+21a]. This makes the rotation with the high resolution model look more realistic,
as well.

Figure 8.4: A demonstration of the texture sticking effect. It shows that the Audi rings
are stuck in place when using the lower resolution, while the move with the car when
using the higher resolution.

98 High Resolution Experiments

Rotation Problems

Although the higher resolution generally improves the quality of the rotation, it shows
that some problems from the previous models also exist at a higher resolution. For
instance, we observe that in some examples, the car is slightly shifted to either side at
0°. An example for this is given in Figure 8.5. Similarly to subsection 7.4.2, we observe
that the car is rotated to the right at 0°, while the actual front view is found at 12°.
This problem is likely caused by the cooperative loss function, as we observed this effect
with its introduction for the first time.

Figure 8.5: An example rotation, where the car is slightly shifted to the right. At 0° it
shows the car from the ’front right’ view, while the actual ’front center’ view is located
at 12°.

In some rare examples this problem even causes the car to collapse at the front view.
This can be seen in Figure 8.6, where the front of the car is skipped and the rotation
directly fades from one side view to the next, creating a very unrealistic rotation. This
might indicate that the proportion of continuous angles during the training might still
be too high, since such an effect increased using 40% continuous angles instead of 20%.

Figure 8.6: An example rotation, where the front of the car collapses.

Another problem that still exists at a higher resolution is the rotation around the rear
of the car. Although we showed in Figure 8.3 that we do not observe the problem where
a tire gets converted into an exhaust pipe any longer, the rotations still sometimes look
very poor. An example for this is shown in Figure 8.7. There, the car tires fade in at
about 186° causing the images to look less realistic.

Figure 8.7: An example rotation around the rear of a car, demonstrating slightly worse
quality at 186° and 192°.

8.2 Training Results 99

Summary

In this chapter, we showed that the model produces analogous results when increasing
the image resolution. Similar to the experiment from section 7.3, in which we changed the
rotation label, we observed that the general image quality was reduced, while the rotation
improved. In this experiment we showed that in addition to the image quality, the
conditional metrics were also reduced. We, however, hypothesize that the components
from chapter 5 still slightly improve image quality for unseen label combinations, as
the FID of the combination model increased less when using random label combinations
instead of real labels from the dataset.
For the high resolution baseline model, we observed the same rotation problems as
for the previous baseline model. It showed that the car collapses during most of the
transitions between the discrete 45° angles, making the rotations look very unrealistic.
Therefore, we only compared the rotations of the combination model with the final model
of chapter 7. This showed that the higher resolution generally benefits the rotation
quality. We observed much less problems where some textures were sticking to a specific
location or where car tires got converted into other parts of the car. We hypothesize that
those problems might still exist at the higher resolution, although they are much less
visible. Some problems, on the other hand, were not solved by the higher resolution.
For example, we observed similar problems to previous experiments where the front
of the car was slightly shifted. Such problems were especially visible when using 40%
continuous angles instead of 20%, which indicates that an even better rotation quality
might be found if we lowered the proportion of continuous angles. This likely also holds
true for other parameters, such as the weight of the perceptual rotation regularization,
given that the VGG16 differences might be increased with the higher resolution model,
even though we downscale the images before forwarding them to the VGG16 model.

9 Conclusion & Outlook

In this thesis, we proposed various modifications to the StyleGAN to improve conditional
image synthesis for multi-labeled car images. In addition, we created a smooth 360° ro-
tation of synthesized cars only using discrete rotation labels. Furthermore, we showed
that the proposed methods scale well for high resolutions, providing a big advantage
compared to similar GAN methods from literature that synthesize 3D representations
of objects.
The two modifications from chapter 5 that have brought the largest improvements for
the conditional image synthesis were label dropout and a separate label mapping net-
work. In the label dropout method we randomly removed some of the labels and thereby
created a considerably larger amount of distinct label combinations. This showed signifi-
cant improvements for the image quality when synthesizing from new label combinations
that did not exist in the dataset. In addition, the modification also removed dependen-
cies between the labels. For the second modification, we added a second network to
the generator that maps the labels independently from the random latent vectors. We
hypothesized that this helps the model to find a better organization of the disentangled
latent space that spatially separates the semantics of the labels. As a result, we observed
a better image quality for unseen label combinations and a lower entanglement between
the labels. At the end of chapter 5 we also showed that the proposed modifications work
well in combination, although a more suitable conditional loss function for multi-labeled
data might improve the conditional image synthesis even further. This is because we
observed that the model mostly focused on the general image quality instead of synthe-
sizing the correct conditional semantics. For future work it will be interesting to test
how the modifications perform with alternative loss functions.
In chapter 7 we experimented with different approaches to create a 360° rotation with
the discrete rotation labels from the car dataset. There, the two modifications that
achieved the biggest improvement were the changed rotation label and the training with
continuous rotation angles. In the first modification, the changed rotation label, we
replaced the one-hot rotation label with a more suitable 2D vector that describes the
position of the camera around the car using the sine and cosine of the rotation angle.
This enabled us to design a regression loss for the rotation angle in both the generator
and the discriminator that can be trained simultaneously with the adversarial loss. This
improved the rotation considerably, as less images collapsed, while the transitions be-
came significantly smoother. In the second modification, the training with continuous
rotation angles, we used a semi-supervised training approach that enabled us to learn
continuous rotation angles in the discriminator. To do so, we used the produced images
from the generator as training samples for the discriminator. As a result, the synthesized

101

102 Conclusion & Outlook

rotations were much less prone to creating collapsed images. At the end of chapter 7
we also showed that the proposed modifications work well in combination. There, we
observed an even better rotation quality than in all previous experiments.
At last, we combined the modifications that improve the conditional image synthesis
with the modifications that improved the 360° rotation view and showed that our meth-
ods scale well with higher resolutions. This brings a major advantage compared to other
methods from literature, which often struggle with a bottleneck that is caused by an
internal 3D image representation that comes with expensive operations.
An interesting future application of this model can be to combine it with the latent
space gradient descent method from section 4.1. This could enable to take a real image
of a car, re-synthesize it with our model, and then modify specific attributes or rotate
it.
Although, we designed the modifications for the rotation from chapter 7 specifically for
car images, we hypothesize that they also work for various other domains. Furthermore,
we also believe that those techniques can not only be applied for spatial attributes, such
as the camera location, but also for any other discrete label for which we would like to
synthesize smooth transitions between classes. This enables numerous applications for
3D graphic design or the synthesis of animations from labeled images.

List of Figures

2.1 GAN Architecture . 3
2.2 GAN Example Images . 4
2.3 Mode Collapse . 5
2.4 Example Images of the StyleGAN . 5
2.5 StyleGAN Generator Architecture . 6
2.6 Weight Modulation . 8
2.7 Conditional GAN Architecture . 9
2.8 Conditional GAN Architecture . 10
2.9 Alternative Conditional GAN Architecture 10
2.10 FID Examples . 11

3.1 Image Edit Pipeline . 13
3.2 Rotation Label Examples . 15
3.3 Label Histogram for the Image Background 16
3.4 Label Histogram for the Car Body . 16
3.5 Dataset Biases Label Histograms . 17

4.1 Example Latent Space Gradient Descent Application 20
4.2 Style Mixing . 21
4.3 Changing the 2nd Component of the PCA in the Latent Space 22
4.4 Changing the 20th Component of the PCA in the Latent Space 22

5.1 Classifier Performances . 26
5.2 Baseline Label Vector Visualization . 28
5.3 Baseline FID and Example Images . 32
5.4 Baseline Bad Examples . 32
5.5 Conditional Accuracy Baseline . 33
5.6 Baseline Label Entanglement . 34
5.7 FID Graph of the Soft Label Randomization Model 37
5.8 Example Images of the Soft Label Randomization Model 37
5.9 Soft Label Randomization Loss Graph 38
5.10 FID of the Training with the Label Dropout 39
5.11 Example Images of the Training with the Label Dropout 40
5.12 Label Entanglement Matrix Label Dropout 41
5.13 FID over the Training of the Label Dropout Method with 50% 42
5.14 Separate Mapping Architecture . 43

103

104 List of Figures

5.15 FID Graph of the Training with the Separate Label Mapping 44
5.16 Label Entanglement Matrix Separate Mapping 45
5.17 Discriminator Architecture with the Label Information 47
5.18 FID Graph of the Training with the Additional Label Information in the

Discriminator . 47
5.19 Grad-CAM Visualization . 49
5.20 Average Intensity Difference of the Feature Maps when using the Addi-

tional Label in the Discriminator . 50
5.21 FID Graph of the Combination Model 53
5.22 Comparing Images from Random Label Combinations 53

6.1 3D-GAN Architecture . 59
6.2 PrGAN Architecture . 60
6.3 EG3D Architecture . 61
6.4 EG3D Examples . 61

7.1 3D Bounding-Box Example . 65
7.2 Baseline Example Rotation . 66
7.3 Baseline Bad Rotation Examples at the Front and Rear 67
7.4 Baseline Collapsing Tire Example . 68
7.5 Baseline Rotation Consistency Graph . 69
7.6 Baseline Rotation Distance Graph . 69
7.7 Sine / Cosine Loss . 71
7.8 Sine / Cosine GAN Training . 72
7.9 Rotation Distance of the Regression Model 73
7.10 Rotation Distance of the Sine / Cosine Training 74
7.11 FID Graph Sine / Cosine . 75
7.12 Sine / Cosine Compare Front Rotation Sequence 76
7.13 Sine / Cosine Continuous Rotation Distance Graph 77
7.14 Sine / Cosine Example Rotation Sequence 77
7.15 Good Rotation Example from the Training with 20% Continuous Angles 80
7.16 Bad Rotation Example from the Training with 20% Continuous Angles . 80
7.17 Bad Rotation Example from the Training with 40% Continuous Angles . 81
7.18 Good Rotation Example using the Cooperative Rotation Loss (20% con-

tinuous) . 83
7.19 Bad Front Rotation using the Cooperative Rotation Loss (20% continuous) 84
7.20 Bad Front Rotation using the Cooperative Rotation Loss (40% continuous) 84
7.21 Example of a Shifted Rotation . 85
7.22 Perceptual Rotation Regularization Graph 87
7.23 Incremental Perceptual Distance Graph for the Rotation Regularization

Experiments . 88
7.24 Bad Rotation Example with the Rotation Regularization Experiment with

a weight of 20 . 89
7.25 Rotation Example of the Experiment with all Components Combined . . 90

List of Figures 105

7.26 Bad Rear Rotation Example of the Experiment with all Components
Combined . 91

8.1 Demonstration of the Inconsistent Rotation Speed when using the Sepa-
rate Mapping Component . 94

8.2 Bad Rotation Examples from the High Resolution Baseline Model 96
8.3 Improved Rear Rotation with the High Resolution 97
8.4 Texture Sticking Demonstration . 97
8.5 Demonstration of the Shifted Rotation 98
8.6 Shifted Example of a Rotation around the Front of the Car 98
8.7 Collapsed Example of a Rotation around the Rear of the Car 98

List of Tables

3.1 Label Overview . 14

5.1 Baseline Conditional Metrics . 35
5.2 Label Dropout Conditional Accuracy . 40
5.3 Label Dropout Conditional Metric Overview 42
5.4 Separate Mapping Conditional Accuracy 45
5.5 Separate Mapping Conditional Metric Overview 46
5.6 Conditional Accuracy of the Model trained with the Label Information in

the Discriminator . 48
5.7 Baseline Conditional Metrics . 51
5.8 Conditional Metric Summary . 52
5.9 Combination Model Conditional Accuracy 54
5.10 Discriminator Output for Fake Images 55
5.11 Combination Model Metrics . 56

7.1 Baseline Rotation Metrics . 70
7.2 Rotation Accuracy Sine / Cosine . 75
7.3 Sine / Cosine Baseline Rotation Metrics 78
7.4 Rotation Metrics for the Model with 20% Continuous Angles 81
7.5 Rotation Metrics for the Model with 20% Continuous Angles (Cooperative) 83
7.6 Rotation Accuracy for the Model with 20% Continuous Angles (Cooper-

ative) . 85
7.7 Rotation Metrics for the Training with the Perceptual Rotation Regular-

ization . 87
7.8 Rotation Metrics for the Training that Combines all Rotation Components 90

8.1 Summary Rotation Metrics . 95

107

Bibliography

[3db] 3D-BoundingBox 3D-BoundingBox implementation. https://github.com
/skhadem/3D-BoundingBox. Accessed: 2022-02-22.

[Ban+21] Andrea Bandini et al. “A New Dataset for Facial Motion Analysis in Indi-
viduals With Neurological Disorders”. In: IEEE Journal of Biomedical and
Health Informatics 25.4 (2021), pp. 1111–1119. doi: 10.1109/JBHI.2020.
3019242.

[Cha+15] Angel X. Chang et al. ShapeNet: An Information-Rich 3D Model Reposi-
tory. 2015. arXiv: 1512.03012 [cs.GR].

[Cha+21a] Eric R. Chan et al. “Efficient Geometry-aware 3D Generative Adversarial
Networks”. In: arXiv. 2021.

[Cha+21b] Eric R Chan et al. “pi-gan: Periodic implicit generative adversarial net-
works for 3d-aware image synthesis”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 5799–
5809.

[Den12] Li Deng. “The mnist database of handwritten digit images for machine
learning research”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–
142.

[Dos+17] Alexey Dosovitskiy et al. CARLA: An Open Urban Driving Simulator. 2017.
arXiv: 1711.03938 [cs.LG].

[Gau14] Jon Gauthier. “Conditional generative adversarial nets for convolutional
face generation”. In: Class Project for Stanford CS231N: Convolutional
Neural Networks for Visual Recognition, Winter semester 2014.5 (2014),
p. 2.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for au-
tonomous driving? The KITTI vision benchmark suite”. In: 2012 IEEE
Conference on Computer Vision and Pattern Recognition (2012), pp. 3354–
3361.

[GMW16] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3D Shape Induction
from 2D Views of Multiple Objects. 2016. arXiv: 1612.05872 [cs.CV].

[Goo+14] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

[He+15] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV].

109

https://github.com/skhadem/3D-BoundingBox
https://github.com/skhadem/3D-BoundingBox
https://doi.org/10.1109/JBHI.2020.3019242
https://doi.org/10.1109/JBHI.2020.3019242
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1612.05872
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1512.03385

110 Bibliography

[Heu+17] Martin Heusel et al. GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium. 2017. arXiv: 1706.08500 [cs.LG].

[Hä+20] Erik Härkönen et al. GANSpace: Discovering Interpretable GAN Controls.
2020. arXiv: 2004.02546 [cs.CV].

[Jun+21] Klaus Jung et al. PicArrange – Visually Sort, Search, and Explore Private
Images on a Mac Computer. 2021. arXiv: 2111.13363 [cs.CV].

[Kar+19] Tero Karras et al. Analyzing and Improving the Image Quality of StyleGAN.
2019. arXiv: 1912.04958 [cs.CV].

[Kat+19] Natsumi Kato et al. “Gans-based clothes design: Pattern maker is all you
need to design clothing”. In: Proceedings of the 10th Augmented Human
International Conference 2019. 2019, pp. 1–7.

[KLA18a] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Ar-
chitecture for Generative Adversarial Networks. 2018. arXiv: 1812.04948
[cs.NE].

[KLA18b] Tero Karras, Samuli Laine, and Timo Aila. Flickr-Faces-HQ Dataset (FFHQ).
2018. url: https://github.com/NVlabs/ffhq- dataset (visited on
06/10/2020).

[Li+18] Haodong Li et al. “Can Forensic Detectors Identify GAN Generated Im-
ages?” In: 2018 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC). 2018, pp. 722–727. doi:
10.23919/APSIPA.2018.8659461.

[LPT13] Joseph J. Lim, Hamed Pirsiavash, and Antonio Torralba. “Parsing IKEA
Objects: Fine Pose Estimation”. In: 2013 IEEE International Conference
on Computer Vision (2013), pp. 2992–2999.

[Met+16] Luke Metz et al. Unrolled Generative Adversarial Networks. 2016. arXiv:
1611.02163 [cs.LG].

[MGN18] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which Train-
ing Methods for GANs do actually Converge? 2018. arXiv: 1801.04406
[cs.LG].

[MNG18] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. “Which Training
Methods for GANs do actually Converge?” In: International Conference on
Machine Learning (ICML). 2018.

[MO14] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”.
In: arXiv preprint arXiv:1411.1784 (2014).

[Mou+17] Arsalan Mousavian et al. 3D Bounding Box Estimation Using Deep Learn-
ing and Geometry. 2017. arXiv: 1612.00496 [cs.CV].

[NG21] Michael Niemeyer and Andreas Geiger. “GIRAFFE: Representing Scenes
as Compositional Generative Neural Feature Fields”. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). 2021.

https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/2004.02546
https://arxiv.org/abs/2111.13363
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://github.com/NVlabs/ffhq-dataset
https://doi.org/10.23919/APSIPA.2018.8659461
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1612.00496

111

[OS19] Cedric Oeldorf and Gerasimos Spanakis. LoGANv2: Conditional Style-Based
Logo Generation with Generative Adversarial Networks. 2019. arXiv: 1909.
09974 [cs.LG].

[Roc19] Joseph Rocca. “Understanding generative adversarial networks (gans)”. In:
Medium, Jan 7 (2019), p. 20.

[Sal+16] Tim Salimans et al. Improved Techniques for Training GANs. 2016. arXiv:
1606.03498 [cs.LG].

[Sel+17] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep
networks via gradient-based localization”. In: Proceedings of the IEEE in-
ternational conference on computer vision. 2017, pp. 618–626.

[Sho+21] Alon Shoshan et al. GAN-Control: Explicitly Controllable GANs. 2021.
arXiv: 2101.02477 [cs.CV].

[Stya] StyleGAN implementation GitHub (NVlabs). https://github.com/NVlab
s/stylegan2. Accessed: 7.10.2021.

[Styb] StyleGAN2 Benchmark paperswithcode.com benchmark. https://papersw
ithcode.com/paper/analyzing-and-improving-the-image-quality-

of. Accessed: 2022-01-27.

[Styc] StyleGAN2 GitHub StyleGAN2 implementation. https://github.com/
NVlabs/stylegan2. Accessed: 2022-01-27.

[SZ14] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[Sze+15] Christian Szegedy et al. Rethinking the Inception Architecture for Computer
Vision. 2015. arXiv: 1512.00567 [cs.CV].

[TE11] Antonio Torralba and Alexei A. Efros. “Unbiased look at dataset bias”. In:
CVPR 2011 (2011), pp. 1521–1528.

[Tom+15] Tatiana Tommasi et al. A Deeper Look at Dataset Bias. 2015. arXiv: 1505.
01257 [cs.CV].

[Vas+17] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762
[cs.CL].

[Wah+20] Abdul Waheed et al. “Covidgan: data augmentation using auxiliary classi-
fier gan for improved covid-19 detection”. In: Ieee Access 8 (2020), pp. 91916–
91923.

[Wu+17] Jiajun Wu et al. Learning a Probabilistic Latent Space of Object Shapes via
3D Generative-Adversarial Modeling. 2017. arXiv: 1610.07584 [cs.CV].

[Zha+19] Han Zhang et al. “Self-attention generative adversarial networks”. In: In-
ternational conference on machine learning. PMLR. 2019, pp. 7354–7363.

https://arxiv.org/abs/1909.09974
https://arxiv.org/abs/1909.09974
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/2101.02477
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan2
https://paperswithcode.com/paper/analyzing-and-improving-the-image-quality-of
https://paperswithcode.com/paper/analyzing-and-improving-the-image-quality-of
https://paperswithcode.com/paper/analyzing-and-improving-the-image-quality-of
https://github.com/NVlabs/stylegan2
https://github.com/NVlabs/stylegan2
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1505.01257
https://arxiv.org/abs/1505.01257
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1610.07584

112 Bibliography

[ZKS21] Peiye Zhuang, Oluwasanmi Koyejo, and Alexander G Schwing. “Enjoy your
editing: Controllable gans for image editing via latent space navigation”.
In: arXiv preprint arXiv:2102.01187 (2021).

	Abstract
	Introduction
	Related Work
	Generative Adversarial Networks
	StyleGAN
	Architecture
	Weight Modulation
	Path Length Regularization

	Conditional Generative Networks
	Fréchet Inception Distance

	Training Data
	Image Adaptation
	Labels
	Dataset Biases

	Controlling the Image Synthesis of GANs
	Latent Space Gradient Descent
	Style Mixing
	Principle Component Analysis of the Latent Space
	Summary

	Conditional StyleGAN Experiments
	Image Quality
	Conditional Accuracy
	Label Entanglement
	Image Quality for unseen Label Combinations
	Implementing the Conditional StyleGAN
	Baseline Model
	Label Sampling
	Soft Label Randomization
	Label Dropout

	Separate Label Mapping
	Label Information in the Discriminator
	Combination Experiment
	Summary

	3D Image Synthesis with GANs
	3D Output Space
	Internal 3D Representation
	Alternative Internal 3D Representations
	Summary

	360° Rotation View Experiments
	Rotation Goals and Metrics
	Rotation Image Quality
	Rotation Linearity
	Random Rotation Accuracy
	Continuous Rotation Distance

	Problems with the Baseline Model
	Sine / Cosine Rotation Label
	Training with Continuous Rotations
	Ignoring the Continuous Rotation Loss
	Cooperative Continuous Rotation Loss

	Perceptual Rotation Regularization
	Combining the Components
	Summary

	High Resolution Experiments
	Combination Model Configuration
	Training Results

	Conclusion & Outlook
	List of Figures
	List of Tables
	Bibliography

